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Integrative synchronization mechanisms
in connectionist cognitive neuroarchitectures
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Abstract

Based on the mathematics of nonlinear Dynamical System Theory, neurocognition can be analyzed by convergent
fluid and transient neurodynamics in abstract n-dimensional system phase spaces in the form of nonlinear vector
fields, vector streams or vector flows (the so-called “vectorial form”). This processual or dynamical perspective on
cognition, including the dynamical binding mechanisms in cognitive neuroarchitectures, has the advantage of a more
accurately modeling of the transient cognitive processes. Thus, neurocognition can be considered as being organized
by integrative synchronization mechanisms which best explain the liquid flow of neurocognitive information
orchestrated in a network of positive and/or negative feedback loops in the subcortical and cortical areas. The human
neurocognitive system can be regarded as a nonlinear, dynamical and open nonequilibrium system. This new fluid or
liquid perspective in cognitive science and cognitive neuroscience can be regarded as a contribution towards
bridging the gap between the discrete, abstract symbolic description of propositions in the mind, and their
continuous, numerical implementation in self-organizing neural networks modelling the neural information
processing in the human brain.

Keywords: Connectionism, Feature and variable binding problem, Synchronization mechanisms, Dynamical system
theory, Self-organization

Introduction
One of the core themes in cognitive science consists in
the endeavour to achieve an integrated theory of cogni-
tion, which requires integrative mechanisms explaining
how the information processing occurring simultaneously
in spatially segregated (sub-)cortical areas is coordinated
and bound together to give rise to coherent perceptual
and symbolic representations (Engel and Singer 2001;
Singer 2013a). This so-called “(general) binding problem”
(Hardcastle 1998; Hummel 1999; Singer 1999a; Sougné
2003; von der Malsburg 2001), that is, the problem of
dynamically representing conjunctions of informational
elements, from the most basic perceptual representations
(“feature binding”) to the most complex cognitive rep-
resentations like symbol structures (“variable binding”),
appears to be solved by temporal integrative mechanisms.
In other words, one of the coordinating mechanisms
appears to be the temporal synchronization of neural
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phase activity based on dynamical self-organizing pro-
cesses in neural networks. In what follows several theo-
retical models in neuroinformatics, in cognitive science,
in cognitive and computational neuroscience are pre-
sented which use this mechanism of temporal synchrony
against the background of connectionism, the theory of
non-linear dynamical systems, and the self-organization
paradigm.
First, the term “(integrative) synchronization mech-

anism” may be defined briefly as follows, referring to
the mathematical concept of an algebraic structure:
A (causal) structure, realized by a function, wherein
an operand or a component, for example, a semantic
concept in language processing or an object feature
in perception, is set in relation to another operand or
component, for example to a syntactic position or to
another object feature, via a synchronous operation. This
operation may consist of a vector multiplication, as it
has been introduced in the activation, propagation and
learning functions of connectionism (see Section “Basic
computational principles in connectionism”), for exam-
ple in the “Tensor Product Representation” in Section
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“Integrated Connectionist/Symbolic (ICS) Cognitive
Architecture” with a synchronous tensor product oper-
ation, where a semantic constituent, realized by a filler
vector, is bound to a syntactic position, realized by a
role vector, or in the “Holographic Reduced Representa-
tions” in Section “Holographic Reduced Representations
(HRRs)” with a synchronous circular convolution
operation.
In Section “Basic computational principles in connec-

tionism”, the standard computational principles in con-
nectionism are reviewed from the scientific literature in
computer science and in theoretical neurophilosophy. In the
following Section “Review: The binding problem in the
cognitive neurosciences: binding-by-synchrony mecha-
nism”, the binding problem in the cognitive neurosciences
is reviewed with focus on the binding-by-synchrony
hypothesis in neurophysiology. After that, theoretical
models and cognitive neuroarchitectures are considered
that use integrative synchronization mechanisms solv-
ing the binding problem in low-level cognition (Section
“Review: Modeling integrative synchronization mecha-
nisms in low-level cognition”) and in high-level cognition
(Section “Review: Modeling integrative synchronization
mechanisms in high-level cognition”). Finally, in Section
“Conclusions”, these computational cognitive neuroarchi-
tectures in modern connectionism are discussed, as well
as their implications for the future of cognitive science and
neurophilosophy (Section “Outlook on future research”).

Basic computational principles in connectionism
Since the 1980s, when the theory of artificial neural net-
works (Haykin 2009) was emerging, in cognitive science
two alternative paradigms were pursued to model cogni-
tion. On the one hand, the classical symbolic theory, so-
called “symbolism” (Fodor and Pylyshyn 1988a), regards
symbol processing as the suitable model of cognition,
that is, the serial, syntactical and universal transforma-
tion of discrete elementary symbols in complex symbol
structures by means of computational algorithms. On
the other hand, so-called “connectionism” (Bechtel and
Abrahamsen 2002; Clark 2001; Garson 2015) regards par-
allel and distributed information processing in the form
of vector and tensor constructions as the suitable model
of cognition, that is, the application of artificial neural
networks with architectures possessing a high grade of
neurobiological plausibility (“brain style modeling”).
An “Artificial Neural Network (ANN)” may be consid-

ered as an directed and weighted mathematical graph:
It consists of relatively simple (processing) units, the so-
called “nodes,” which are technical neurons and are wired
with one another through weighted connections, the so-
called “edge.”
The neurons compute their actual state of activation,

consisting of a numerical activation value, by means of an

activation function, conditioned on the previous state of
activation aj(t), the net input netj(t) and the threshold θj:

aj(t + 1) = fact[ aj(t), netj(t), θj] . (1)

Thus, the net input is computed by means of the prop-
agation function, that is, the sum of the products of
the respective connection weights toward the presynaptic
neurons with their outputs: if the previous state of acti-
vation of the postsynaptic neuron together with it’s net
input now exceeds its threshold, the postsynaptic neuron
becomes active:

netj(t) =
∑
i
oi(t)wij. (2)

The core of neural network theory is the introduction
of (synaptic) learning rules, that is, rules for the change
of synaptic weights as a function of the network’s activa-
tion state. Thus, a learning rule is an algorithm, according
to which an artificial neural network learns to yield the
desired output for a given input. The “Hebb rule,” named
after the Canadian psychologist Donald O. Hebb (Hebb
1949), which is the fundament of the principle of neural
plasticity, says: The synaptic weight is increased if the pre-
and postsynaptic neurons are active in subsequent time
steps, i.e. if the presynaptic neuron fires and the synapse is
“successful” in the sense that the postsynaptic neuron fires
as well:

�wij = ηoiaj, (3)

where �wij is the change of the connection weight wij, η
is a constant learning rate, oi is the output of the presy-
naptic neuron i and aj is the activation of the postsynaptic
neuron j.
The information of a connectionist system is coded by

“distributed representations,” described through the con-
nection matrix of the network, that is, the presence of a
given (sensory) information element may be determined
by the activation pattern distributed over a set of neu-
rons, in which the activity of a single neuron is part of the
representation of many alternative information elements
(“Parallel Distributed Processing (PDP)”)(McClelland
et al. 1986).

Self-organization in neuroinformatics
In the following the Self-Organizing (Feature) Map
(SO(F)M) (Kohonen 1982; 2001a) is described, also called
“Kohonen map,” named after the Finnish engineer Teuvo
Kohonen, which simulates the information processing of
the pyramidal cells in the cortex. A Kohonen map con-
sists of an input-layer and a “Kohonen layer”: Thus, all
neurons of the input layer are connected in parallel via
variable weight vectors, also called a “reference vectors”
or a “synapse vectors,” to all neurons of the competitive
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layer, also denoted the “Kohonen layer.” That means that
all competitive neurons receive the same input signals.
At the beginning of the training, the weights of the

synapse vectors are randomly imposed. If an arbitrary
input pattern is presented, each neuron of the Kohonen
layer receives a (vector) copy of this pattern, modified by
the different synaptic weights, such that the neurons of
the Kohonen layer differ in the degree to which they are
excited: Thus, that neuron will “win,” that is, will be most
excited, the synapse vector of which best matches the
input vector. The “Best-Matching Unit (BMU),” denoted
as c, is defined by the minimal Euclidean difference
between the input vector x(t) and the corresponding ref-
erence vectorsmi(t):

c = argmin
i

{‖x(t) − mi(t)‖} (4)

Because the “matching” is not total, however learning
occurs: The synapse vector of the BMU is now shifted
toward the input vector by a small amount. To a smaller
extent the synapse vectors of the neurons within the
BMU’s “neighborhood” are also shifted toward the input
vector. As a result, the input patterns which are similar to
that pattern represented by the BMU are represented with
a higher degree of probability in the neighborhood of the
BMU.
The adaptation of the BMU and its topological “neigh-

bors” is increased in the direction of the actual input
vector in the scope of the “neighborhood function” hci:

mi(t + 1) = mi(t) + hci(t)[ x(t) − mi(t)] , (5)

for example with

hci,gauss(t) = 1
σ(t)

√
2π

· exp
(−‖rc − ri‖2

2σ 2(t)

)
(6)

In other words, the BMU “excites” other neurons within
a specific environment and “inhibits” more distant neu-
rons according to the “principle of lateral inhibition.” On
the basis of this network architecture, the neurons of the
Kohonen layer can adjust their synapse weights by self-
organization in such a way that a topographical feature
map is to be formed. That means that certain features of
the input pattern are mapped in a regular manner onto a
certain network location, such that similar input patterns
are represented close together and input patterns that are
often mapped are represented in a larger area.

Review: The binding problem in the cognitive
neurosciences: binding-by-synchronymechanism
The general “binding problem” (Treisman 1996; von der
Malsburg 1999; 2001) in the cognitive neurosciences
consists in identifying mechanisms that integrate neu-
ral processes in order to generate coherent perceptual
impressions by which, for instance, sensory information
in visual perception is structured in such a manner that it

can be “bound” together into coherent perceptual impres-
sions. In other words, one has to detect which neurophys-
iological mechanisms of feature binding and of Gestalt
laws are active in perceiving the environment, to deter-
mine what elementary object property and object rela-
tions must be combined together such that a visual situ-
ation can be adequately analyzed and represented (“scene
analysis”).
Since the 1980s the connectionist model of “population

coding” (Singer 2002) has developed into the neurophys-
iological theory of perception, also called the “assembly
model (Singer 1999a).” It holds that the elementary object
properties and the complex objects in the visual cor-
tex are represented by means of populations of temporal
synchronously active neurons, the so-called “(cell) assem-
blies”: According to this “binding-by-synchrony hypoth-
esis” (Singer 1999b; 2009; 2013a,b) developed by Wolf
Singer and his former collaborators Andreas K. Engel and
Peter König, one has to regard these cell assemblies of
coherently active neurons as the fundamental units of
information processing in the cortex. Thus, the assem-
bly model holds that those sensory neurons activated by
the same object are bound together through a temporal
phase synchronization of their oscillatory impulses down
to a few milliseconds, and thereby constitute populations
of neurons, namely the “(cell) assemblies”, in such a man-
ner that a coherent percept can be constructed. Thus, an
adequate mapping of contours to a specific object, for
example, can be performed in scene analysis, as proposed
at the beginning of the the 1980s by Christoph von der
Malsburg with his so-called “correlation theory of brain
function (von der Malsburg 1981/1994).”
In a hugh number of animal experiments, especially on

cats, but also on human experiments (an overview can be
found in Singer 1999b; 2009; 2013a,b) it has been demon-
strated through “cross-correlation analysis” (Engel et al.
1990) that the neurons in the visual cortex synchronize
their action potentials with a precision of a few millisec-
onds. Thus, they can be combined to assemblies, not only
within particular cortical columns and cortical areas, i.e.
of the primary visual area V1, but also between the differ-
ent visual areas within a hemisphere. These synchroniza-
tion processes are predominantly observed in a specific
frequency band, the so-called “gamma-band (Fries et al.
2007),” that is in a frequency range about 30–90 Hz. It’s
an outstanding question whether neuronal synchrony is a
relevant causal mechanism for the phenomenon of (con-
scious) perceptual binding or a statistical (cor-)relation,
and so only a distal “marker” of binding (Hardcastle 1999).

Review: Modeling integrative synchronization
mechanisms in low-level cognition
In what follows, a cognitive neuroarchitecture is presented
that solves the binding problem in perception (“low-level
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cognition”), that is, the problem how elementary object
features and object relations, like the object color or the
object form, can be dynamically bound together or can be
integrated to a representation of this perceptual object by
means of a synchronizationmechanism (“feature binding”,
“feature linking”).

Oscillatory networks
According to Fodor and Pylyshyn (1988b), in order to
build an adequate theory of human cognition, one has to
explain four empirical phenomena: the productivity, sys-
tematicity and compositionality of human language and
the systematicity of inference. Werning (2001) argues that
the problem of semantic compositionality (see Glossary) -
i.e., the fact that the meaning of a complex term is a
syntax-dependent function of the meanings of the partic-
ular syntactic constituents of this complex term - requires
that a neural architecture preserve the causal relations
among the constituent terms within a language. Estab-
lishing these constituent relations enables a cognitive
system to compose complex representations (cf. the so-
called “binding problem”), involving a synchronic relation,
namely the relation of synchrony between phases of neu-
ral activity, which can be defined by so-called “Oscillatory
Networks (Werning 2001).”
Oscillatory Networks can now be given an abstract alge-

braic description, denoted as algebra N, which is based on
only one fundamental operation: being synchronous with,
which relates the phases of neunal activity and is referred
to by the operation symbol “≈N ”. The primitive entities
of the algebra are (1) just the phases of neural activity
ϕN
1 , . . . ,ϕN

m , and (2) the sets of phases FN
1 , . . . , FN

n related
to each collection of neurons which indicate a certain fea-
ture in their receptive field. This notation of the algebra
N is isomorphic to a compositional and systematic lan-
guage, defined as an algebra L, which is also based on only
one fundamental operation: being the same as, denoted
by the symbol “≈L.” This operation relates the indexical
expressions like “this” and “that”, whereby the primitive
entities of the algebra L are (1) just this specific indexicals
ϕL
1 , . . . ,ϕL

m, and (2) specific predicates FL
1 , . . . , FL

n .
The neural representation of an elementary predica-

tion F(a) can now described as follows: If a collection
of sensory neurons which indicate the same property of
an object in their receptive fields and to which a set of
phases is assigned show therefore a certain phase of activ-
ity one can say that the synchronous phase ϕ1 of one of
these neurons is an element of the set of phases FN

j . To
refer to this neural state, the relation of pertaining ε is
defined:

[ϕi ε Fj]N is the neuronal state[ (∃x)(x ≈ ϕi & x ε Fj)]N .
(7)

This is isomorphic to if one links an indexical expression
via the element relation to a predicate:

[ϕi ε Fj]L is the clause[ (∃x)(x ≈ ϕi & x ε Fj)]L . (8)

The process of predication can only be done if both the
phase of activity and the collection of neurons which indi-
cate a property to which a set of phases is assignedmust be
tokened. This is the case because the phase cannot pertain
to the collection unless both the phase and the collection
occur in the cortex. Thus, the required causal constituent
relation between the primitive terms and the complex
term is guaranteed such that oscillatory networks are not
only syntactically, but also semantically compositional.
The Oscillatory Networks model with its neural struc-

tures in the form of synchronous oscillations has been
refined by Werning and Maye (2007; 2005a; 2012a) to a
so-called “(neuro-)emulative semantics”, which is a neu-
robiologically plausible, compositional semantics for a
monadic first-order predicate language. It is also a non-
symbolic semantics because it violates the principle of
semantic constituency (see Glossary). Thus, the feature
binding in low level cognition is modeled by means of
an integrative, dynamical synchronisation mechanism in
the form of dominating oscillation functions, so-called
“eigenmodes,” (see Glossary) in the scope of Hilbert space
analysis with a high degree on neurobiological plausibility:
The computer-simulation model of oscillatory networks
represents a dynamical snapshot of a particular visual
scene in the short-term memory constituting two differ-
ent, simultaneously given perceptual objects, for example
a vertical red bar and a horizontal green bar. The mean-
ing of a sentence which has reference to a situation in
the world is a set of eigenmodes. Each eigenmode, in the
form of an eigenvector which does not interfere with other
eigenmodes, describes the phase synchronous oscillation
of a subset of oscillators between different feature layers,
for example the layers for “red” and “vertical,” which guar-
antees the internal representation of a perceptual object.
In other words, the dynamics of this neuroarchitecture
is governed by a few dominating oscillation functions
which reliably co-vary with perceptual objects because the
oscillators of different feature layers that synchronize in
phase represent properties of the same object. Thus, this
synchronization process “binds” the features “together.”

Review: Modeling integrative synchronization
mechanisms in high-level cognition
In what follows, several cognitive neuroarchitectures are
presented which solve the binding problem in language
processing (“high-level cognition”), that is, the prob-
lem how semantic concepts and syntactic roles can be
dynamically bound together or can be integrated to com-
plex cognitive representations like symbol structures and
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propositions by means of a synchronization mechanism
(“variable binding").

Integrated Connectionist/Symbolic (ICS) Cognitive
Architecture
In the so-called “Integrated Connectionist/Symbolic (ICS)
Cognitive Architecture” Smolensky (2006a; 2006b) aims
at the integration of symbolic and connectionist forms of
mental representations. As for complex representations,
the formal structure is attained as follows: If one combines
several symbols to an unstructured collection of elements,
this constituent combination takes place through pattern
superposition using the vector sum operation of activa-
tion vectors (“superposition principle”). However, if one
combines several symbols to true complex symbol struc-
tures, one has to consider the different syntactic position
or structural role that a symbol token can occupy in the
overall structure. Thus, such a symbolic structure is real-
ized by a connectionist activation vector, the so-called
“tensor product representation” (Petitot 1994; Smolensky
1990; Smolensky and Legendre 2006a), which codes the
syntactic position of a connectionist constituent in its
overall structure in such amanner that this position corre-
sponds to the syntactic position of a symbolic constituent
in a binary parse tree, whereby recursive connectionist
structures can be built, and, as Smolensky argues, system-
aticity can be guaranteed.
Such a symbolic structure s is defined by a set of struc-

tural roles {ri} as variables, which, for each single instance
of the structure, may be individually occupied by sin-
gle fillers {fi} as values, which therefore individuates the
structure. Thus, the symbolic structure s consists in a
set of symbolic constituents, each of which corresponds
to a filler/role binding fi/ri, respectively. This filler/role
binding f /r is now realized by a binding vector b = f/r
consisting in the tensor product of the filler vector f, which
realizes a filler f, and the role vector r, which realizes a role
r, so that b = f/r = f ⊗ r. Thus, the connectionist realiza-
tion of a symbolic structure s corresponds to an activation
vector

s =
∑
i
fi ⊗ ri (9)

consisting in the vector sum of the binding vectors, inso-
far as one identifies the structure s with the conjunction of
the fillers/roles bindings fi/ri. Smolensky offers an exam-
ple: The proposition p “Sandy (S) loves (L) Kim (K),”
following the LISP-convention, can be described by the
symbolic representation p =[ L, [ S,K] ], which mirrors in
the following connectionist composite vector

p = r0 ⊗ L + r1⊗[ r0 ⊗ S + r1 ⊗ K] (10)

where the two - linear independent - role vectors r0 and r1
denotes the left or right branch of a binary-branching tree.

Smolensky (2006c) proposes temporal synchrony as a
method to perform the dynamical binding mechanism
used in the tensor product representation by analogy
to the binding theory developed by von der Malsburg
and Singer in cognitive neuroscience, which is based on
synchronized oscillatory neural assemblies.

Holographic Reduced Representations (HRRs)
Following Smolensky’s “tensor product representation,”
the so-called “Holographic Reduced Representations
(HRRs)” postulated by Tony Plate (2003a) are also built
from a filler/role decomposition of a set of recursive, com-
positional symbol structures. However, unlike the former,
the latter are based on the bilinear, associative operation
of circular convolution rather than the tensor product
operator. Thus, avoiding the shortcomings of the tensor
product representation (with tensor product representa-
tion the binding vector has n2 elements because each role
and filler vector being bound has n elements), this oper-
ation is characterized in such a manner that the binding
vector resulting from two vectors with the dimensionality
or “rank” n, has the same dimensionality or “rank” n, so
that the length or dimensionality n of the resulting vector
representation keeps constant by application to recursive
structures.
Circular convolution of an n-dimensional vector z = x�

y - also called “Faltung” - can be considered a compression
or contraction of the tensor or the outer product of two
n-dimensional vectors x and y, and is defined as follows:

zi =
n−1∑
k=0

xk y(i−k)mod n. (11)

In analogy to Smolensky’s tensor product operation, cir-
cular convolution is also used as a binding operation,
that is, building filler/role bindings for complex recursive
symbol structures (“variable binding”) (Plate 2003b). In
contrast to tensor product representation any (semantic)
filler vector is reconstructable (“convolution decoding”)
by means of the existence of an (approximative) inverse
(Plate 2003c).

Neural Engineering Framework (NEF)
This circular convolution operation is implemented in
the so-called “Neural Engineering Framework (NEF)”
(Eliasmith 2013; Eliasmith and Anderson 2003a; Stewart
and Eliasmith 2012a, developed by Charles H. Anderson,
Chris Eliasmith and Terrence C. Stewart, a neurobio-
logically plausible neuroarchitecture which offers a non-
symbolic (because “the representations of the constituents
of a structure are not present in the representation of
the structure itself” (Stewart and Eliasmith 2012b)), neu-
rally inspired theory of semantic compositionality (“vari-
able binding”) (Stewart and Eliasmith 2012c). The NEF
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architecture is describable by means of three principles
according to the Neural Engineering approach, namely
(Eliasmith 2003; Eliasmith and Anderson 2003b): (1) A
neural representation, referred to the behaviour of a neu-
ral population over a specific period of time, is defined
by “the combination of nonlinear encoding” and opti-
mally “weighted linear decoding,” (2) a transformation of
a neural representation consists in the “function of a vari-
able represented by neural populations” and is determined
“using an alternately weighted linear decoding,” and (3)
the neural dynamic of a neurobiological system “can be
analyzed using control theory.”
To attain a neurobiologically plausible model consisting

of representations with a compositional semantics, one
has to calculate the optimal synaptic connection weights
between neural groups in such a manner that a desired
transformation function f(x) is defined (Stewart and
Eliasmith 2012d). In this case, the function of a circular
convolution with two variables is defined, so that the acti-
vation values ai(x) and aj(x) from these two neural groups
can be bound together in the form of a filler/role bind-
ing in a compositional HRRs representation according to a
so-called “optimal linear function decoder” (Eliasmith and
Anderson 2003c; Stewart and Eliasmith 2012e):

f̂ (x(t)) =
∑
i
ai(x(t))φ

f
i with φ

f
i = �−1ϒ (12)

whereby �ij =
∫

ai(x)aj(x)dx and ϒj =
∫

aj(x)f (x)dx

(13)

According to Werning’s (2012b) “definiton of for-
mal compositionality,” a semantic compositum in the
neuroarchitectures of the so-called “Vector Symbolic
Architectures (VSA)” (Levy and Gayler 2008), for exam-
ple the ICS, HRRs and the NEF neuroarchitecture, is
“a homomorphic image of the syntactic structure of the
language” so that the modern principle of semantic com-
positionality (Hodges 2001; Werning 2012c) is fulfilled.
The HRRs model and, implementing the circular con-
volution operation, the NEF model provide not only a
compositional but also a symbolic semantics which satis-
fiesWerning’s (2012c) “principle of semantic constituency
(Werning 2012d),” because of an “algorithm of unbind-
ing” (Werning 2012e) which approximately identifies the
part-whole relation of a complex representation. These
neuroarchitectures use the concept of circular convo-
lution as an integrative binding mechanism such that,
by means of the operation of unbinding, the bounded,
semantic filler vector is recoverable - at least approxi-
mately. Thus, the semantic part-whole relation is pre-
served in the scope of a vector based constituent structure

and remain in this sense “present.” Further, the NEF archi-
tecture is, to a high degree, neurobiologically plausible
compared to available evidence in cognitive neuroscience
because it shows robustness towards an increased loss
of neural ressources (“graceful degradation”) and because
its accuracy increases with growing neural ressources
but decreases if structure complexity rises (Stewart and
Eliasmith 2012f). Finally, this architecture can be viewed
- from the perspective of philosophy of science - as an
empirically well-tested theory using a wide range of mea-
surable neuroscientific variables.

Conclusions
Based on the mathematics of nonlinear Dynamical Sys-
tem Theory (DST) (see Glossary) including the Paradigm
of Self-Organization, the above-discussed computational
cognitive neuroarchitectures in modern connectionism
are characterized by a high degree of neurobiological
plausibilty and describe neurocognition1 as an inherently
dynamical process in the sense of van Gelder and Port
(van Gelder and Port 1995). Thus, at its heart, cognition
can be analyzed by convergent “fluid”2 and “transient”3
neurodynamics in abstract “n-dimensional system phase
spaces” in the form of nonlinear vector fields, vector
streams or vector flows.
The models presented here, based on the integra-

tive mechanism of temporal synchrony, contribute new
insights in the service of an integrated theory of cogni-
tion, and point toward a modern neurophilosophy and
cognitive science as a “Unified Science of the Mind/Brain”
(Churchland 2002; 2007): The Mind/Brain may be con-
sidered as one and the same nonlinear, complex dynamical
system, in which information processing can be described
with vector and tensor transformations and with attrac-
tors in multidimensional state spaces. This processual or
dynamical perspective on cognition, including the dynam-
ical binding mechanisms described above, has the advan-
tage of a more accurately modeling of the fluid cognitive
processes and the plasticity of the neural architecture
(Smolensky 1988). As a result, neurocognition can con-
sidered as an organization of integrative system mecha-
nisms which best explain the liquid flow of neurocognitive
information orchestrated in a recurrent network of pos-
itive and/or negative feedback loops in the subcortical
and cortical areas, based on the so called “vectorial
form”4.
The nature of this vectorial form of neurocognitive

information can be best modeled by self-excited, self-
amplifying and self-sustained waveforms superimposing
each other in fluid multiple-coupled feedback cycles
(Abeles 1991; Bienenstock 1995; Freeman 1987, 2000a b,
Kilpatrick 2015; Kohonen 2001b; Sandstede 2007; Troy
2008a,b; Werning 2012a). Thus, the neural informa-
tion storage and retrieval in the long-term memory, for
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example, can be understand by means of computational
adaptive resonance mechanisms in the dominant wave-
forms, or “modes” (Grossberg and Somers 1991), and by
warming up and annealing of oscillationmodes by streams
of informational processes in the context of computational
“energy functions,” like in “Harmony Theory” (Smolensky
and Legendre 2006a).
Thus, the “Binding Problem” in cognitive neuroscience,

that is, the problem of dynamically representing con-
junctions of informational elements, from the most basic
perceptual representations (“feature binding”) to the most
complex cognitive representations like symbol structures
(“variable binding”), appears to be solved by the tem-
poral synchronization of neuronal phase activity based
on dynamical self-organizing processes in the neuronal
networks.
The human neurocognitive system can be regarded as

a nonlinear, dynamical and open nonequilibrium system
(Glansdorff and Prigogine 1971 Nicolis and Prigogine
1977; Schrödinger 1944/2012; von Bertalanffy 1950;
1953), which can be described in the scope of a nonequi-
librium neurodynamics: in a continuous flow of infor-
mation processing (“online and realtime computation”
(Maass et al. 2002)) the system filters system-relative
and system-relevant information in its environment, that
contains a high degree of order, and does so in a
manner that integrate new information optimally into
the informational structures constructed up to that
time (“Free-Energy Principle” (Friston 2010; Friston and
Stephan 2007; Sporns 2011)). Thus, an internal neu-
rocognitive concept consists of a dynamical process
which filters out statistical prototypes from the senso-
rial information in terms of coherent and adaptive n-
dimensional vector fields. These prototypes serve as a
basis for dynamic, probabilistic predictions or probabilis-
tic hypotheses on prospective, new data (see the recently
introduced approach of “predictive coding” in neurophi-
losophy (Clark 2013; Hohwy 2013)).
This new fluid perspective in cognitive science and

cognitive neuroscience includes that the researcher in phi-
losophy of science make use of a mechanistic-systemic
method (Bechtel 2008; Chemero and Silberstein 2008;
Craver 2007; Kaplan and Craver 2011; Piccinini and
Craver 2011): the temporal process mechanisms struc-
tured in the sense of the nonlinear Dynamical System
Theory would be a general dynamical scheme or model
which describe and explain a particular global sys-
tem phenomenon on multiple system levels both under
a analytical-mechanistic perspective in the form of a
nonlinear nonequilibrium neurodynamics based on infor-
mational system components and under a synthetic-
holonomic perspective in form of non-linear differential
equation systems with global order parameters (Haken
2004).

The mathematics of nonlinear Dynamical System The-
ory (DST), including attractor dynamics (see Glossary)
and the paradigm of self-organization, can be regarded
as a contribution towards building a deeper understand-
ing of what neural or cognitive information really is.
Furthermore, these new tools shed light on how the
flow of informational elements are integrated into com-
plex systematic structures, from the most basic per-
ceptual representations, generated by cell assemblies, to
the most complex cognitive representations, like symbol
structures, generated by tensor products or oscillatory
representations.
Thus, these integrative mechanisms can be regarded as

a contribution towards bridging the gap between the dis-
crete, abstract symbolic description of propositions in the
mind, and their continuous, numerical implementation
in neural networks in the brain. This may be regarded
as a step toward an embodied, fully integrated theory of
cognition.

Outlook on future research
Symbolic versus sub-symbolic components in (hybrid)
integrative cognitive neuroarchitectures
Bridging the gap between different levels of description,
explanation, representation, and computation in symbolic
and sub-symbolic paradigms of neurocognitive systems
modelling one of the unsolved core issues in the cogni-
tive sciences is the mode of (hybrid) integration between
connectionist-systemtheoretical subsymbolic and logic-
linguistic-based symbolic approaches. To what extent
can new developments in the modelling and analysis of
recurrent, self-organized ANN architectures, e.g. wave
field theories of neural information processing based on
travelling waves and described by nonlinear oscillations
functions (first approaches see Coombes 2005; Kilpatrick
2015; Rougier and Detorakis 2013; Troy 2008a,b; Sand-
stede 2007)), bring together models from discrete and
continuous mathematics operating both on the basis of
low-level processing of perceptual information, and by
performing high-level reasoning and symbol processing?

Neurocognitive integration based on self-organized,
cyclical (phase) synchronization mechanisms
A key factor for the analysis of integrating informa-
tion in neurocognition are self-organized phase synchro-
nization mechanisms, as in the “binding-by-synchrony
hypothesis” (Singer 1999b; 2009; 2013a,b). This raises the
question to what extent the dynamic mode of combina-
tions of synchronous process mechanisms by cascading
spreading activations in upwards, downwards and side-
wards feedback loops in terms of multiple cyclic graph
structures can be used as a decisive criterion for a
new concept of self-organization and emergence in neu-
rocognition (see e.g. “micro-macro link (MML) problem”
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(Auyang 1998; Fromm 2005); “small-world networks,”
“connectome” (Sporns 2011))? In the theory of dissipative
self-organization one can consider as one fundamental
principle of pattern formation in neurobiological dynam-
ical systems the synergy of short-range, autocatalytic acti-
vation (excitation) trough positive feedback cycles and
long-range, crosscatalytic (lateral) inhibition through neg-
ative feedback cycles. According to this principle, which
organizational structure of advanced cognitive neuroar-
chitectures would be preferable for an improved (abstract)
pattern recognition, for example, the mixture of an oscil-
latory network with a Kohonen map?

Fluid or liquid perspective in modeling cognitive
neuroarchitectures
A special feature of the cognitive binding mechanisms in
human-level intelligence is their fluid and transient char-
acter. What contribution can make newer dynamic algo-
rithmicmethods (“liquid computing”: (Maass 2007;Maass
et al. 2002); “reservoir computing”: (Jaeger 2002/2013;
Lukoševičius and Jaeger 2009; Lukoševičius et al. 2012),
“deep (machine) learning”: (Schmidhuber 2014)) or com-
bination ofmodels from connectionism andDynamic Sys-
tem Theory ((Spencer et al. 2009); Dynamic Field Theory
(DFT): (Lipinsky et al. 2012)) in the analysis and modeling
of recurrent cognitive neuroarchitectures?

Abstract neurocognitive systems incorporating embodied
human-level cognition and intelligence
A rapprochement between the dynamic system theory
and (embodied) connectionism takes place further on
“Evolutionary Robotics” and “Developmental Robotics”
(Cangelosi and Schlesinger 2015; Rempis et al. 2013;
Schlesinger 2009). This raises the question to what extent
this progress that robotics researchers have made toward
a hybrid embodied approach can contribute new insights
in solving the binding problem in embodied cognitive sci-
ence (Barsalou 1999; Franklin 2013) with special consid-
eration to these neurocognitive integrative mechanisms
discussed above implemented in robots and androids
acting as agents in complex (developmental and social)
situations?

Glossary
Attractor dynamics: describes convergent system pro-
cesses to relatively invariant, stable system states, the
so-called attractors, with a corresponding attractor basin
that correspond, geometrically interpreted, a region in
phase space in which neighboring trajectories asymptoti-
cally are heading for from a wide variety of starting points
in a given environment, in other words, it’s a region that
attracts these trajectories.
In formal notation: Given an n-fold iteration of a transfor-
mation function f n with f n(x1) = xn + 1 with n ∈ Z

+ and

x ⊆ X then one call a compact, invariant and attractive
set A ⊆ X as an attractor if there exists a (fundamental)
neighborhood U of A, so that:

lim
n→∞ d(f n(x),A) = 0 ∀x ∈ U , U neighborhood of A ⊆ X

(14)

with the two properties

(1) ≡n≥0 f n(U) = A
(2) f (Ū) ⊆ U with (Ū) : closure of U. (15)

(See for details (Devaney 1994))

(nonlinear) Dynamical System Theory (DST): is an
area of mathematics used to describe the behavior of com-
plex dynamical systems, usually by employing a system of
(nonlinear) differential equations:

x′
1(t) = f1(x1(t), . . . , xd(t))

...
x′
d(t) = fd(x1(t), . . . , xd(t)).

The formal definition of a dynamic system with a large
number of n elements consists of (1) an abstract, d-
dimensional phase space or state space X of which d
system variables x1(t), . . . , xd(t) in terms of vector coor-
dinates the system state x(t) in its course over time t
fully explain, and (2) a dynamic transformation function f,
which determines the changes of all state variables in the
time and the system state.
(See for details (Hall and Fagen 1968))

Eigenmode: It is according to the basics of Synergetics
(Haken 2004) that the dynamics of a complex oscillating
system, e.g. an oscillatory ANN, is often governed by a
few stable, dominating oscillations which are the so-called
“eigenmodes” or “principal modes” of the system, and can,
therefore, be described by a small set of corresponding
order parameters. The corresponding eigenvalues desig-
nate how much of the variance is accounted for by an
eigenmode. The explanatory power of the eigenmodes
relies on the simultaneous analysis of a large number
of neurons or neuronal populations: “Another way of
describing oscillatory network activity by superposition
of eigenstates is to determine the principal components
of the activity based on a numerical simulation of the
network. This is possible for arbitrary stimuli. Computa-
tionally, the principal components are eigenvectors of the
covariance matrix C:

D =

⎡
⎢⎢⎢⎣
x1(t1) x1(t2) . . . x1(tm)

x2(t1) x2(t2) . . . x2(tm)
...

...
. . .

...
xn(t1) xn(t2) . . . xn(tm)

⎤
⎥⎥⎥⎦
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C = DDT

V�V−1 = C

Matrix D contains the activity of oscillators at
equidistant time points. V is the matrix of eigenvectors
and the diagonal matrix � contains the corresponding
eigenvalues. The eigenmodes constitute an orthonormal
coordinate system in which the variance of the network
activity in each direction is determined by the magnitude
of the respective eigenvalues. The network activity can be
described by a superposition of the eigenmodes vi with
time- dependent weights ci(t):

x(t) =
∑
i
ci(t)vi (16)

The weights ci(t) are determined by projecting the net-
work activity on the respective eigenmode i:

ci(t) = x(t)Tvi. (17)

We will call the weights ci(t) characteristic functions
because they correspond to distinct interpretations of the
stimulus.
If functions ci(t) have a sinusoidal time course they can

be expressed by kieλit+�i . Here, ki is the amplitude of the
oscillation and the imaginary part of the complex eigen-
values λi is its frequency. The network activity can then be
written as

x(t) =
∑
i
kivieλit+�i , (18)

(. . . ).”
(See for details (Maye and Werning 2007; Werning

2005b))

Euclidean distance: According to the Pythagorean
Theorem it’s in a 2-dimensional Euclidean space the
distance between the points (x1, y1) and (x2, y2) and is
defined by

d(x, y) = ∥∥x − y
∥∥ =

√
(x2 − x1)2 + (y2 − y1)2. (19)

.
In general it’s defined by

d(xi, xj) = ∥∥xi − xj
∥∥ =

√√√√ m∑
k=1

(xik − xjk)2. (20)

(See for details (Hair et al. 2010))

Formal compositionality: The definition of formal com-
positional of a language’s semantics - in the sense of
a homomorphism between two algebraic structures, the
syntactic structure 〈T ,�T 〉 of a language and its semantic
structure 〈M,�M〉 reads as follows:

“(Formal Compositionality) Given a language with the
syntax 〈T ,�T 〉, a meaning function μ : T → M is called
compositional just in case, for every n-ary syntactic oper-
ation σ ∈ �T and any sequence of terms t1, . . . , tn in the
domain of σ , there is a partial functionmσ defined onMn

such that

μ(σ(t1, . . . , tn)) = mσ (μ(t1), . . . ,μ(tn)) (21)

A semantics induced by a compositional meaning func-
tion will be called a compositional semantics of the lan-
guage.” (See for details (Werning 2012b))

Semantic constituency: “(. . . ) (Semantic constituency)
There is a semantic part-whole relation on the set of
meanings such that for every two terms, if the one is
a syntactic part of the other, then the meaning of the
former is a semantic part of the meaning of the latter.”
(Werning 2012c). This principle of semantic constituency
describes the correspondence of two part-whole relations
which formal broadly conceived definition reads as fol-
lows (Werning 2012b): “(. . . ) (Part-whole Relation) A rela-
tion⊆ defined on a set X is called a part-whole relation on
X just in case, for all x, y, z ∈ X the following holds: (. . . )

(i) x � x (reflexivity).
(ii) x � y ∧ y � x → x = y (anti − symmetry).
(iii) x � y ∧ y � z → x � z (transitivity).′′

(22)

Symbolic semantics: “(. . . ) (Symbolic Semantics) Given
a language with the syntax 〈T ,�T 〉, a thereon defined syn-
tactic part-whole relation �T , and a meaning function
μ : T → M, then its semantics 〈M,�M〉 is symbolic if
and only if there is a part-whole relation�M defined onM
such that for all terms s, t ∈ T the following holds:

s �T t → μ(s) �M μ(t).” (23)

(See for details (Werning 2012f))

Endnotes
1The term “neurocognition” or “neurocognitive” means

that cognitive neuroarchitectures are treated that take
into account the recent neuroscientific empirical evidence
to a large extent, in other words, that have a high degree
of neurobiological plausibility.

2“Fluid” means that the vectorial transformation pro-
cesses have a very flowing character with very continuous,
gradual transitions.

3“Transient” means that very fast, temporary and highly
volatile vectorial information processing take place in the
cognitive neuroarchitectures described here.

4“Vectorial form” means that the computational trans-
formation processes in the cognitive neuroarchitectures
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consist of (1) vectorial structures, e.g. semantic, syntactic
or sensory concepts in the form of vectors or tensors, and
(2) functions like vector additions, vector multiplications
or tensor products.
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