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Abstract

Background: We are interested in an asynchronous graph based model, G(N ,E) of cognition or cognitive
dysfunction, where the nodesN provide computation at the neuron level and the edges Ei→j between nodesNi and
nodeNj specify internode calculation.

Methods: We discuss how to improve update and evaluation needs for fast calculation using approximations of
neural processing for first and second messenger systems as well as the axonal pulse of a neuron.

Results: These approximations give rise to a low memory footprint profile for implementation on multicore
platforms using functional programming languages such as Erlang, Clojure and Haskell when we have no shared
memory and all states are immutable.

Conclusions: The implementation of cognitive models using these tools on such platforms will allow the possibility
of fully realizable lesion and longitudinal studies.

Keywords: Cognition models; Graphs of computational nodes; Nodal computation approximation

Background
We note all brain models connect computational nodes
(typically neurons) to other computational nodes using
edges between the nodes. The proper background and
motivation for this approach are discussed in (Peterson
2014a). That review article provides a reasonable intro-
duction to the blend of ideas from mathematics, bio-
physics and signaling theory such as first and second
messengers alongwith neurobiological concepts and com-
putational implementation issues that are the foundation
for the work presented here. We intend this article for
researchers from computational, biological and mathe-
matical backgrounds and the review provides an overview
and a common set of notations and language. On the
basis of that background material, we therefore model
the neural circuitry of a brain using a directed graph
architecture G(N ,E) consisting of computational nodes
N and edge functions E which mediate the transfer of
information between two nodes. Hence, if Ni and Nj
are two computational nodes, then Ei→j would be the
corresponding edge function that handles information
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transfer from node Ni and node Nj. We organize the
directed graph using interactions between neural mod-
ules (visual cortex, thalamus etc) which are themselves
subgraphs of the entire circuit. Once a direct graph is
chosen to represent neural circuitry, the addition of new
neural modules is easily handled as a subgraph addition.
Although connectivity is time dependent, we can think of
a useful brain model as a sequence of such graphs of nodes
and edges. For simulation purposes, this means there is
a finite sequence of times, {t1, t2, . . . , tn} and associated
graphs Gi(Ni,Ei), where the subscript i denotes the time
point ti. In between these times, the graph has fixed con-
nectivity and we can use a variety of tools to train the
graph to meet input to output objectives. At each time
point, we can therefore build our cognitive model using
many different approaches as detailed in, e.g. (Friston
2005, 2010; Russo and Nestler 2013; Sherman 2004) and
(Maia and Frank 2011). Indeed, some topology considera-
tions for schizophrenia are directly addressed in (Li et al.
2012). However, here we are concerned with how to
approximate the details of nodal processing so that com-
putations can be performed efficiently with low mem-
ory footprint using the no shared memory model of
a functional programming language such as Erlang,
Haskell and Clojure. These languages allow us to design
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simple processes that interact and have no shared mem-
ory state. On even a typical laptop today, we can have
four cores and 16 GB of memory, so it is easily possible
to simulate the interactions of many thousands of sim-
ple interacting neurons as simple processes. Recall in the
graph context, the update equations for a given node then
are given as an input/output pair. For the node Ni, let
yi and Yi denote the input and output from the node,
respectively. Then we have

yi(t + 1) = Ii +
∑
j∈B(i)

Ej→i(t) Yj(t) where Yi(t + 1)

= σi(t)(yi(t)).

where Ii is a possible external input, B(i) is the list of
nodes which connect to the input side of node Ni and
σi(t) is the function which processes the inputs to the
node into outputs. This processing function is mutable
over time t because second messenger systems are alter-
ing how information is processing each time tick. Hence,
our model consists of a graph G which captures the
connectivity or topology of the brain model on top of
which is laid the instructions for information processing
via the time dependent node and edge processing func-
tions. A simple look at edge processing shows the nodal
output which is perhaps an action potential which is trans-
ferred without change to a synaptic connection where
it initiates a spike in Ca+2 ions which results in neuro-
transmitter release. The efficacy of this release depends
on many things, but we can focus on four: ru(i, j), the
rate of re-uptake of neurotransmitter in the connection
between node Ni and node Nj; the neurotransmitter is
destroyed via an appropriate oxidase at the rate rd(i, j);
the rate of neurotransmitter release, rr(i, j) and the den-
sity of the neurotransmitter receptor, nd(i, j). The triple
(ru(i, j), rd(i, j), rr(i, j)) ≡ T(i, j) determines a net increase
or decrease of neurotransmitter concentration between
the two nodes: rr(i, j) − ru(i, j) − rd(i, j) ≡ rnet(i, j). The
efficacy of a connection between nodes is then propor-
tional to the product Wi,j = rnet(i, j) × nd(i, j). Hence,
each triple is a determining signature for a given neuro-
transmitter and the effectiveness of the neurotransmitter
is proportional to the new neurotransmitter flow times the
available receptor density. A very simple version of this is
to simply assign the value of the edge processing function
Ej→i to be the weight Wi,j as is standard in a simple con-
nectionist architecture. We want to be more sophisticated
than this and therefore want to allow our nodal process-
ing functions to approximate the effects of both first and
second messenger systems; consult (Peterson 2014a) for
more detail.

Cellular triggers
Now consider the transcriptional control of a regulatory
molecule such as NFκB ( which plays a role in immune

system response ) or a neurotransmitter. We can call this
a trigger and denote it by T0. This mechanism is discussed
in a semi-abstract way in (Gerhart and Kirschner 1997);
we will discuss even more abstractly. Consider a trigger
T0 which activates a cell surface receptor. Inside the cell,
there are always protein kinases that can be activated in
a variety of ways. Here we denote a protein kinase by the
symbol PK. A common mechanism for such an activa-
tion is to add to PK another protein subunit U to form
the complex PK/U . This chain of events looks like this:
T0 → CSR → PK/U where CSR denotes a cell sur-
face receptor. PK/U then acts to phosphorylate another
protein. The cell is filled with large amounts of a transcrip-
tion factor we will denote by T1 and an inhibitory protein
for T1 we label as T∼

1 . This symbol, T∼
1 , denotes the com-

plement or anti version of T1. In the cell, T1 and T∼
1 are

generally joined together in a complex denoted by T1/T∼
1 .

The addition of T∼
1 to T1 prevents T1 from being able to

access the genome in the nucleus to transcribe its target
protein.
The trigger T0 activates our protein kinase PK to

PK/U . The activated PK/U is used to add a phosphate
to T∼

1 . This is called phosphorylation. Hence, PK/U +
T∼
1 → T∼

1 P where T∼
1 P denotes the phosphorylated ver-

sion of T∼
1 . Since T1 is bound into the complex T1/T∼

1 , we
actually have PK/U + T1/T∼

1 → T1/T∼
1 P In the cell,

there is always present a collection of proteins which tend
to bond with the phosphorylated form T∼

1 P. Such a sys-
tem is called a tagging system. The protein used by the
tagging system is denoted by V and usually a chain of n
such V proteins is glued together to form a polymer Vn.
The tagging system creates the new complex T1/T∼

1 PVn.
This gives the following event tree at this point:

T0 → CSR → PK/U

PK/U + T1/T∼
1 → T1/T∼

1 P
T1/T∼

1 P + Tag → T1/T∼
1 PVn

Also, inside the cell, the tagging system coexists with a
complimentary system whose function is to destroy or
remove the tagged complexes. Hence, the combined sys-
tem Tag ←→ Remove → T1/T∼

1 P is a regulatory
mechanism which allows the transcription factor T1 to
be freed from its bound state T1/T∼

1 so that it can per-
form its function of protein transcription in the genome.
The removal system is specific to Vn molecules; hence
although it functions on T∼

1 PVn, it would work just as
well on QVn where Q is any other tagged protein. We
will denote the removal system which destroys Vn tagged
proteins Q from a substrate S by the symbol fSQVn. This
symbol means the system acts on SQVn units and outputs
S via mechanism f . Note the details of the mechanism
f are largely irrelevant here. Thus, we have the reaction
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T1/T∼
1 PVn + fSQVn → T1 which releases T1 into the

cytoplasm. The full event chain is thus:

T0 → CSR → PK/U
PK/U + T1/T∼

1 → T1/T∼
1 P

T1/T∼
1 P + Tag → T1/T∼

1 PVn
T1/T∼

1 PVn + fSQVn → T1
T1 → N → TPT P(T1)

where N is the nucleus, TPT denotes the phrase tagged
protein transcription and P(T1) indicates the protein
whose construction is initiated by the trigger T0. Without
the trigger, we see there are a variety of ways transcription
can be stopped:

• T1 does not exist in a free state; instead, it is always
bound into the complex T1/T∼

1 and hence can’t be
activated until the T∼

1 is removed.
• Any of the steps required to remove T∼

1 can be
blocked effectively killing transcription:

– phosphorylation of T∼
1 into T∼

1 P is needed so
that tagging can occur. So anything that blocks
the phosphorylation step will also block
transcription.

– Anything that blocks the tagging of the
phosphorylated T∼

1 P will thus block
transcription.

– Anything that stops the removal mechanism
fSQVn will also block transcription.

The steps above can be used therefore to further reg-
ulate the transcription of T1 into the protein P(T1). Let
T ′
0, T ′′

0 and T ′′′
0 be inhibitors of the steps above. These

inhibitory proteins can themselves be regulated via trig-
gers through mechanisms just like the ones we are dis-
cussing. In fact, P(T1) could itself serve as an inhibitory
trigger - i.e. as any one of the inhibitors T ′

0, T ′′
0 and T ′′′

0 .
Our theoretical pathway is now:

T0 → CSR → PK/U

PK/U + T1/T∼
1 →i T1/T∼

1 P
T1/T∼

1 P + Tag →ii T1/T∼
1 PVn

T1/T∼
1 PVn + fSQVn →iii T1

T1 → N → P(T1)

where the step i, step ii and step iii can be inhibited as
shown below:

T0 → CSR → PK/U

PK/U + T1/T∼
1 →i T1/T∼

1 P
↑ T ′

0kill
T1/T∼

1 P + Tag →ii T1/T∼
1 PVn

↑ T ′′
0 kill

T1/T∼
1 PVn + fSQVn →iii T1

↑ T ′′′
0 kill

T1 → N → P(T1)

Note we have expanded to a system of four triggers which
effect the outcome of P(T1). Also, note that step i is a
phosphorylation step. Now, let’s refine our analysis a bit
more. Usually, reactions are paired: we typically have the
competing reactions

PK/U + T1/T∼
1 → T1/T∼

1 P and
T1/T∼

1 P → T1/T∼
1 + PK/U

Hence, we can imagine that step i is a system which is
in dynamic equilibrium. The amount of T1/T∼

1 P formed
and destroyed forms a stable loop with no net T1/T∼

1 P
formed. The trigger T0 introduces additional PK/U into
this stable loop and thereby effects the net production of
T1/T∼

1 P. Thus, a new trigger T ′
0 could profoundly effect

phosphorylation of T∼
1 and hence production of P(T1).

We can see from the above comments that very fine con-
trol of P(T1) production can be achieved if we think of
each step as a dynamical system in flux equilibrium. Note
our discussion above is a first step towards thinking of this
mechanism in terms of interacting objects.

Dynamical loop details
Our dynamical loop consists of the coupled reactions

PK/U + T1/T∼
1 →k1 T1/T∼

1 P and
T1/T∼

1 P →k−1 T1/T∼
1 + PK/U

where k1 and k−1 are the forward and backward reaction
rate constants and we assume the amount of T1/T∼

1 inside
the cell is constant and maintained at the equilibrium
concentration

[
T1/T∼

1
]
e. Since one unit of PK/U com-

bines with one unit of T1/T∼
1 to phosphorylate T1/T∼

1 to
T1/T∼

1 P, we see[
T1/T∼

1
]
(t) = [

T1/T∼
1

]
e − [PK/U ] (t). (1)

Hence, [PK/U ]
dt = −k1 [PK/U ]

[
T1/T∼

1
]+k−1

[
T1/T∼

1 P
]
.

For this reaction, we have [PK/U ] = [
T1/T∼

1
]
; thus, we

find
d [PK/U ]

dt
= −k1 [PK/U ]2 + k−1

[
T1/T∼

1 P
]

(2)

From equation 1, we see d[T1/T∼
1 ]

dt = −d[PK/U ]
dt and hence

d
[
T1/T∼

1
]

dt
= k1 [PK/U ]2 − k−1

[
T1/T∼

1 P
]

(3)

Hence, at equilibrium, d[T1/T∼
1 ]

dt = 0 implying

k1
k−1

[PK/U ]2 = [
T1/T∼

1 P
]

(4)

Now let [PK/U ]e denote the equilibrium concentration
established by equation 4. Then if the trigger T0 increases
[PK/U ] by δPK/U , we see

[
T1/T∼

1 P
]
new = k1

k−1
([PK/U ]e + δPK/U )2 (5)
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which implies the percentage increase from equilibrium is

100
(
1 + δPK/U

[PK/U ]e

)2
. This back of the envelope calcula-

tion can be done not only at step i but at the other steps
as well. Letting δT1/T∼

1 P and δT1/T∼
1 PVn denote changes in

critical molecular concentrations, let’s examine the stage
ii equilibrium loop. We have

T1/T∼
1 P →k2 T1/T∼

1 PVn and (6)
T1/T∼

1 PVn →k−2 T1/T∼
1 P

The kinetic equations are then
d

[
T1/T∼

1 P
]

dt
= −k2

[
T1/T∼

1 P
] + k−2

[
T1/T∼

1 PVn
]
(7)

d
[
T1/T∼

1 PVn
]

dt
= k2

[
T1/T∼

1 P
] − k−2

[
T1/T∼

1 PVn
]

(8)

Dynamic equilibrium then implies that d[T1/T∼
1 P]

dt =
d[T1/T∼

1 PVn]
dt and hence 2k2

[
T1/T∼

1 P
] = 2k−2

[
T1/T∼

1 PVn
]

or
k2
k−2

[
T1/T∼

1 P
] = [

T1/T∼
1 PVn

]
(9)

Equation 9 defines the equilibrium concentrations
of

[
T1/T∼

1 P
]
e and

[
T1/T∼

1 PVn
]
e. Now if

[
T1/T∼

1 P
]

increased to
[
T1/T∼

1 P
] + δT1/T∼

1 P, the percentage

increase would be 100
(
1 + δT1/T∼

1 P
[T1/T∼

1 P]e

)2
. If the increase

in [T1/T∼
1 P] is due to step i, we know

δT1/T∼
1 P = [

T1/T∼
1 P

]
new − [

T1/T∼
1 P

]
e

= k1
k−1

([PK/U ]e + δPK/U )2 − k1
k−1

[PK/U ]2e

= k1
k−1

{
2 [PK/U ] δPK/U + δ2PK/U

}
We also know

[
T1/T∼

1 P
]
e = k1

k−1
[PK/U ]2e and therefore

δT1/T∼
1 P[

T1/T∼
1 P

]
e

= 2
δPK/U

[PK/U ]e
+

(
δPK/U

[PK/U ]e

)2

For convenience, let’s define the relative change in a vari-
able x as rx = δx

x . Thus, we can write

rT1/T∼
1 P = δT1/T∼

1 P[
T1/T∼

1 P
]
e
and rPK/U = δPK/U

[PK/U ]e
which allows us to recast the change in

[
T1/T∼

1
]
equation

as

rT1/T∼
1 P = 2rPK/U + r2PK/U

Hence, it follows that δT1/T∼
1 PVn = k2

k−2
δT1/T∼

1 P and so

rT1/T∼
1 PVn = rT1/T∼

1 P = 2rPK/U + r2PK/U .

From this, we see that trigger events which cause rPK/U to
exceed one, create an explosive increase in

[
T1/T∼

1 PVn
]
.

Finally, in the third step, we have

T1/T∼
1 PVn →k3 T1 and T1 →k−3 T1/T∼

1 PVn (10)

This dynamical loop can be analyzed just as we did in step
ii. We see

k3
k−3

[
T1/T∼

1 PVn
]
e = [T1]e

and the triggered increase in [PK/U ]e by δPK/U induces
the relative change

δT1 = k3
k−3

δT1/T∼
1 PVn = k3

k−3

k2
k−2

δT1/T∼
1 P

= k3
k−3

k2
k−2

k1
k−1

(
2 δPK/U [PK/U ]e + δ2PK/U

)

= k3k2k1
k−3k−2k−1

(
( 2 rPK/U + r2PK/U

)
[PK/U ]2e

We can therefore clearly see the multiplier effects of trig-
ger T0 on protein production T1 which, of course, also
determines changes in the production of P(T1).
The mechanism by which the trigger T0 creates acti-

vated kinase PK/U can be complex; in general, each unit
of T0 creates λ units of PK/U where λ is quite large –
perhaps 10,000 or more times the base level of [PK/U ]e.
Hence, if rPK/U = β and K = k1k2k3

k−1k−2k−3
, we have

δT1 = (2β + β2) K [PK/U ]2e >> [PK/U ]e
for β >> 1. From this quick analysis, we can clearly see
the potentially explosive effect changes in T0 can have on
PK/U . Let us note two every important points now: there
is richness to this pathway and the target P(T1) can alter
hardware or software easily. If P(T1) was a K+ voltage
activated gate, then we see an increase of δT1 ( assuming
1 − 1 conversion of T1 to P(T1) ) in the concentration of
K+ gates. This corresponds to a change in the characteris-
tics of the axonal pulse. Similarly, P(T1) could create Na+
gates thereby creating change in axonal pulse characteris-
tics. P(T1) could also create other proteins whose impact
on the axonal pulse is through indirect means such as the
kill T ′

0 etc. pathways. There is also the positive feedback
pathway via δPK/U through the T0 receptor creation. Note
that all of these pathways are essentially modeled by this
primitive.

Secondmessengers
The monoamine neurotransmitters dopamine, serotonin
and norepinephrine modulate the use of Ca+2 within a
cell in a variety of ways. From the discussions in (Hille
1992), the protein levels of AC, adenyl cyclase; CAMP,
cyclic adenosine monophosphate; G proteins Gi, Gs, Go
andGp; PDE, phosphodiesterase; PKA, CAMP dependent
kinase; CamK, calmodulin dependent kinase; PLC, phos-
pholipase C; PKC, C kinase; IP3, inositol-1,4,5 triphos-
phate; DAG, diacylglycerol; IN1, PKA inhibitor; PP,
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generic protein phosphotase; S1, S2, S3, S4, S6 and S7,
surface proteins, and others, can all be altered. Creation
of these proteins alters the hardware of the cell; indeed,
these proteins Si could be anything used in the function-
ing of the cell. Following (Bray 1998), we can infer protein
kinases, protein phosphatases, transmembrane receptors
etc. that carry and process messages inside the cell are
associated with compact clusters of molecules attached
to the cell membrane which operate as functional units
and signaling complexes provide an intermediate level
of organization like the integrated circuits used in VLSI.
However, this interpretation is clearly flawed as these cir-
cuits are self-modifying. A close look extracellular triggers
abstractly helps us understand how to approximate their
effects. The full details showing how we obtain abstrac-
tions of information processing can be found in (Peterson
2014b) and here, we will be brief. Let T0 denote a sec-
ond messenger trigger which moves though a port P to
create a new trigger T1 some of which binds to B1. We
have already discussed this is an abstract way. Here we are
looking at it more computationally. A schematic of this is
shown in Figure 1. In the figure, r is a number between
0 and 1 which represents the fraction of the trigger T1
which is free in the cytosol. Hence, 100r% of T1 is free
and 100(1 − r) is bound to B1 creating a storage complex
B1/T1. For our simple model, we assume rT1 is trans-
ported to the nuclear membrane where some of it binds
to the enzyme E1. Let s in (0, 1) denote the fraction of rT1
that binds to E1. We illustrate this in Figure 2.
We denote the complex formed by the binding of E1 and

T1 by E1/T1. From Figure 2, we see that the proportion of
T1 that binds to the genome (DNA) and initiates protein
creation P(T1) is thus srT1.
The protein created, P(T1), could be many things. Here,

let us assume that P(T1) is a sodium, Na+, gate. Thus,
our high level model is sE1/rT1 + DNA → Na+ gate
We therefore increase the concentration of Na+ gates,
[Na+] thereby creating an increases in the sodium con-
ductance, gNa. The standard Hodgkin - Huxley conduc-
tance model (details are in (Peterson 2014c)) is given by
gNa(t,V ) = gmax

Na Mp
Na(t, v)H

q
Na(t,V ) where t is time and

V is membrane voltage. The variables MNa and HNa are
the activation and inactivation functions for the sodium
gate with p and q appropriate positive powers. Finally,

Figure 1 A second messenger trigger.

Figure 2 Some T1 binds to the genome.

gmax
Na is the maximum conductance possible. These mod-
els generate MNa and HNa values in the range (0, 1) and
hence, 0 ≤ gNa(t,V ) ≤ gmax

Na .
We can model increases in sodium conductances as

increases in gmax
Na with efficiency e, where e is a number

between 0 and 1. We will not assume all of the sE1/rT1 +
DNA to sodium gate reaction is completed. It follows that
e is similar to a Michaelson - Mentin kinetics constant.
We could also alter activation, MNa, and/or inactivation,
HNa, as functions of voltage, V in addition to the change
in the maximum conductance. However, we are interested
in a simple model at present. Our full schematic is then
given in Figure 3.
We can model the choice process, rT1 or (1 − r)B1/T1

via a simple sigmoid, f (x) = 0.5
(
1 + tanh

(
x−x0
g

))
where

the transition rate at x0 is f ′(x0) = 1
2g . Hence, the “gain” of

the transition can be adjusted by changing the value of g.
We assume g is positive. This function can be interpreted
as switching from of “low” state 0 to a high state 1 at speed
1
2g . Now the function h = rf provides an output in (r,∞).
If x is larger than the threshold x0, h rapidly transitions to
a high state r. On the other hand, if x is below threshold,
the output remains near the low state 0.
We assume the trigger T0 does not activate the

port P unless its concentrations is past some thresh-
old [T0]b where [T0]b denotes the base concentration.
Hence, we can model the port activity by hp([T0] ) =
r
2

(
1 + tanh

(
[T0]−[T0]b

gp

) )
where the two shaping param-

eters gp (transition rate) and [T0]b (threshold) must be
chosen. We can thus model the schematic of Figure 1 as
hp([T0] ) [T1]n where [T1]n is the nominal concentration
of the induced trigger T1. In a similar way, we let he(x) =
s
2

(
1 + tanh

(
x−x0
ge

) )
Thus, for x = hp([T0] ) [T1]n, we

have he is a switch from 0 to s. Note that 0 ≤ x ≤ r[T1]n
and so if hp([T0] ) [T1]n is close to r[T1]n, he is approxi-
mately s. Further, if hp([T0] ) [T1]n is small, we will have
he is close to 0. This suggests a threshold value for he of
r[T1]n

2 . We conclude
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Figure 3 Maximum sodium conductance control pathway.

he
(
hp([T0]) [T1]n

)
= s

2

(
1 + tanh

(
hp([T0] )[T1]n − r[T1]n

2
ge

) )

which lies in [ 0, s). This is the amount of acti-
vated T1 which reaches the genome to create the
target protein P(T1). It follows then that [P(T1)]=
he

(
hp([T0] ) [T1]n

)
[T1]n The protein is created with effi-

ciency e and so we model the conversion of [P(T1)] into a
change in gmax

Na as follows. Let

hNa(x) = e
2

(
1 + tanh

(
x − x0
gNa

) )

which has output in [ 0, e). Here, we want to limit how
large a change we can achieve in gmax

Na . Hence, we assume
there is an upper limit which is given by � gmax

Na =
δNa gmax

Na . Thus, we limit the change in the maximum
sodium conductance to some percentage of its baseline
value. It follows that hNa(x) is about δNa if x is sufficiently
larges and small otherwise. This suggests that x should be
[P(T1)] and since translation to P(T1) occurs no matter
how low [T1] is, we can use a switch point value of x0 = 0.
We conclude

hNa([P(T1] ) = e
2
δNagmax

Na

(
1 + tanh

(
[P(T1)]
gNa

) )
(11)

Our model of the change in maximum sodium conduc-
tance is therefore � gmax

Na = hNa([P(T1)] ). We can thus

alter the action potential via a second messenger trigger
by allowing

gNa(t,V ) = (
gmax
Na + hNa([P(T1)] )

)
×Mp

Na(t,V )Hq
Na(t,V )

for appropriate values of p and q within a standard
Hodgkin - Huxley model.
Next, if we assume a modulatory agent acts as a trigger

T0 as described above, we can generate action poten-
tial pulses using the standard Hodgkin - Huxley model
for a large variety of critical sodium trigger shaping
parameters. We label these with a Na to indicate their
dependence on the sodium second messenger trigger.[
rNa, [T0]bNa, gNap , sNa, gNae , eNa, gNa, δNa

]′
We can follow

the procedure outlined in this section for a variety of trig-
gers. We therefore can add a potassium gate trigger with
shaping parameters

[
rK , [T0]Kb, gKp , sK , gKe , eK , gK , δK

]′
.

Concatenated sigmoid transitions:
In the previous section, we have found how to handle
alterations in gmax

Na due to a trigger T0. We have

gNa(t,V ) = (
gmax
Na + hNa([P(T1)] )

)
Mp

Na(t,V )Hq
Na(t,V )

where

hNa([P(T1)]) = e
2

δNa gmax
Na

(
1 + tanh

(
[P(T1)]
gNa

) )
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with e and δNain (0, 1). Let σ (x, x0, g0) = 1
2

(
1+

tanh
(

x−x0
g0

))
Then the sodium conductance modifica-

tion equation is hNa([P(T1)] ) = eδNagmax
Na σ ([P(T1)] , 0,

gNa). Using this same notation, we see

hp([T − 0]) = r σ ([T0] , [T0]b , gp)

he(hp([T0] )[T1]n ) = s σ

(
hp([T0] )[T1]n ,

r[T1]n
2

, ge
)

= s σ

(
r σ ([T0] , [T0]b , gp)[T1]n ,

r[T1]n
2

, ge
)

Note the concatenation of the sigmoidal processing. Now
[P(T1)] = he

(
hp([T0] )[T1]n

)
[T1]n. Thus,

[P(T1)] = sσ
(
rσ ([T0] , [T0]b , gp)[T1]n ,

r[T1]n
2

, ge
)
[T1]n .

Finally,

gNa(t,V ) = gmax
Na ( 1 + eδNa σ ([P(T1)] , 0, gNa) )

Mp
Na(t,V ) Hq

Na(t,V )

Implicit is this formula is the cascade “σ ( σ ( σ ” as
σ ([P(T1)] , 0, gNa) uses two concatenated sigmoid calcu-
lations itself. We label this as a σ3 transition and use the
notation

σ3( [T0] , [T0]b , gp; inner most sigmoid
r; scale innermost calculation by r
[T1]n ; scale again by [T1]n ; this is input

to next sigmoid
r[T1]n

2 , ge; offset and gain of next sigmoid
s; scale results by s
[T1]n ; scale again by [T1]n ; this is

[P(T1)] , input into last sigmoid
0, gNa; offset and gain of last sigmoid)

Thus, the gNa computation can be written as

gNa(t,V ) = gmax
Na

(
1 + eδNaσ3

(
[T0] , [T0]b , gp; r; [T1]n ;

r[T1]n
2

, ge; s; [T1]n ; 0, gNa
))

× Mp
Na(t,V )Hq

Na(t,V )

This implies a trigger T0 has associated with it a data
vector

WT0 =
[
[T0] , [T0]b, gp, r, [T1]n,

r[T1]n
2

, ge, s, [T1]n, 0, gT
]′

where gT denotes the final gain associated with the third
level sigmoidal transition to create the final gate product.
We can then rewrite our modulation equation as

gNa(t,V ) =gmax
Na ( 1 + eδNa σ3(WNa) )

Mp
Na(t,V ) Hq

Na(t,V )

A graphic computation model
We can also recast this model into computational graph
structure. This makes it easier to see how the calcula-
tions will be performed as asynchronous agents. Consider
the typical standard sigmoid transformation hp([T0] ) =
r
2

(
1 + tanh

(
[T0]−[T0]b

gp

) )
. We can draw this as a graph

as is shown in Figure 4 where h denotes the standard
sigmoidal state transition function.

We also have he(hp([T0] ) [T1]n ) = s
2

(
1 + tanh(

hp([T0])[T1]n− r[T1]n
2

ge

) )
which for a given output Y

becomes

he(Y ) = s
2

(
1 + tanh

(
Y − r[T1]n

2
ge

) )

and the computation can be represented graphically
by Figure 5. Finally, we have used [P(T1)]= he(hp
([T0] )[T1]n)[T1]n and hNa([P(T1)]) = eδNagmax

Na h([P(T1)],
0, gNa) which can be shown diagrammatically as in
Figure 6.
These graphs are, of course, becoming increasingly

complicated. However, they are quite useful in depict-
ing how feedback pathways can be added to our com-
putations. Let’s add feedback pathways to the original
maximum conductance control pathway we illustrated in
Figure 3. Figure 7 is equivalent to that of the computa-
tional graph of Figure 6 but shows more of the underlying
cellular mechanisms.
The feedback pathways are indicated by the variables ξ0

and ξ1. The feedback ξ0 is meant to suggest that some of
the protein kinase T1 which is bound onto (1− r)B1/T1 is
recycled (probably due to other governing cycles) back to
free T1. We show this with a line drawn back to the port P.
Similarly, some of the protein kinase not used for binding

Figure 4 The first level sigmoid graph computation.
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Figure 5 Sigmoid computations second level.

to the enzyme E1, to start the protein creation process cul-
minating in P(T1), is allowed to be freed for reuse. This is
shown with the line labeled with the legend 1− ξ1 leading
back to the nuclear membrane. It is clear there are many
other feedback possibilities. Also the identity of the pro-
tein P(T1) is fluid. We have already discussed the cases
where P(T1) can be voltage dependent gates for sodium

Figure 6 Sigmoid computations third level.

and potassium and calcium second messenger proteins.
However, there are other possibilities:

• B1: thereby increasing T1 binding
• T1: thereby increasing rT1 and P(T1)
• E1 thereby increasing P(T1).

and so forth. We can also specialize this to the case of
Ca++ triggers, but we will not do so here.
Let’s specialize our discussion to the case of a neuro-

transmitter trigger. When two cells interact via a synaptic
interface, the electrical signal in the pre-synaptic cell trig-
gers a release of a neurotransmitter (NT) from the pre-
synapse which crosses the synaptic cleft and then by dock-
ing to a port on the post cell, initiates a post-synaptic cel-
lular response. The general pre-synaptic mechanism con-
sists of several key elements: one, NT synthesis machinery
so the NT can be made locally; two, receptors for NT
uptake and regulation; three, enzymes that package the
NT into vesicles in the pre-synapse membrane for deliv-
ery to the cleft. There are two general pre-synaptic types:
monoamine and peptide. In themonoamine case, all three
elements for the pre-cell response are first manufactured
in the pre-cell using instructions contained in the pre-
cell’s genome and shipped to the pre-synapse. Hence, the
monoamine pre-synapse does not require further instruc-
tions from the pre-cell genome and response is therefore
fast. The peptide pre-synapse can only manufacture a pep-
tide neurotransmitter in the pre-cell genome; if a peptide
neurotransmitter is needed, there is a lag in response time.
Also, in the peptide case, there is no re-uptake pump so
peptide NT can’t be reused.
On the post-synaptic side, the fast response is trig-

gered when the bound NT/ Receptor complex initiates an
immediate change in ion flux through the gate thereby
altering the electrical response of the post cell mem-
brane and hence, ultimately its action potential and spike
train pattern. Examples are glutumate (excitatory) and
GABA (inhibitory) neurotransmitters. The slow response
occurs when the initiating NT triggers a second mes-
senger response in the interior of the cell. When the
output of one neuron is sent into the input system of
another, we typically call the neuron providing the input
the pre-neuron and the neuron generating the output, the
post-neuron. The post-neuron’s output is a classical action
potential which we will eventually approximate using a
low dimensional vector called the Biological Feature Vec-
tor or BFV. The pre-neuron generates an axonal pulse
which influences the release of the contents of synaptic
vesicles into the fluid contained in the region between the
neurons. The vesicles contain neurotransmitters. For con-
venience, we focus on one such neurotransmitter, labeled
ζ . The ζ neurotransmitter then acts like the trigger T0
we have already discussed. It binds in some fashion to a
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Figure 7 Adding feedback maximum sodium conductance control pathway.

port or gate specialized for the ζ neurotransmitter. The
neurotransmitter ζ then initiates a cascade of reactions:

• It passes through the gate, entering the interior of the
dendrite. It then forms a complex, ζ̂ .

• Inside the post-dendrite, ζ̂ influences the passage of
ions through the cable wall. For example, it may
increase the passage of Na+ through the membrane
of the cable thereby initiating an ESP. It could also
influence the formation of a calcium current, an
increase in K+ and so forth.

• The influence via ζ̂ can be that of a second messenger
trigger.

Each neuron creates a brew of neurotransmitters specific
to its type. A trigger of type T0 can thus influence the pro-
duction of neurotransmitters with concomitant changes
in post-neuron activity.

Methods
The abstract neuronmodel
It is clear neuron classes can have different trigger charac-
teristics. First, consider the case of neurons which create
the monoamine neurotransmitters. Neurons of this type
in the Reticular Formation of the midbrain produce a
monoamine neurotransmitter packet at the synaptic junc-
tion between the axon of the pre-neuron and the dendrite
of the post-neuron. The monoamine neurotransmitter is
then released into the synaptic cleft and it induces a sec-
ond messenger response. The strength of this response is
dependent on the BFV input from pre-neurons that form
synaptic connections with the post-neuron. The strength
of this input determines the strength of the monoamine

trigger into the post-neuron dendrite. Let the strength
for neurotransmitter ζ be given by the weighting term
cζpre,post . The trigger at time t and dendrite location w on
the dendritic cable is therefore

T0(t,w) = cζpre,post√
t − t0

exp
(

−(w − w0)2

4Dζ
0(t − t0)

)
.

where Dζ
0 is the diffusion constant associated with the

trigger. The trigger T0 has associated with it the protein
T1. We let

T1(t,w) = dζ
pre,post√
t − t0

exp
(

−(w − w0)2

4Dζ
1(t − t0)

)
.

where dζ
pre,post denotes the strength of the induced T1

response and Dζ
1 is the diffusion constant of the T1 pro-

tein. This trigger will act through the usual pathway. Also,
we let T2 denote the protein P(T1). T2 transcribes a
protein target from the genome with efficiency e.

hp([T0(t,w)]) = r
2

(
1 + tanh

(
[T0(t,w)] − [T0]b

gp

) )

I(t,w)) = hp([T0(t,w)]) [T1]n√
t − t0

exp
(

−(w − w0)2

4Dλ
1(t − t0)

)

he(I(t,w)) = s
2

(
1 + tanh

(
I(t,w) − r[T1]n

2
ge

) )

[P(T1)](t,w) = he(I(t,w))

hT2(t,w) = e
2

(
1 + tanh

(
[T2] (t,w)

gT2

) )
[T2](t,w) = hT2(t,w)[T2]n
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Note [T2](t,w) gives the value of the protein T2 con-
centration at some discrete time t and spatial location
w. This response can also be modulated by feedback. In
this case, let ξ denote the feedback level. Then, the final
response is altered to hfT2

where the superscript f denotes
the feedback response and the constant ω is the strength
of the feedback; we have hfT2

(t,w) = ω 1
ξ
hT2(t,w) and

[T2](t,w) = hfT2
(t,w)[T2]n. There are a large number of

shaping parameters here. For example, for each neuro-
transmitter, we could alter the parameters due to calcium
trigger diffusion. These would include Dζ

0 , the diffusion
constant for the trigger, and Dζ

1 , the diffusion constant for
the gate induced protein T1. In addition, transcribed pro-
teins could alter – we know their first order quantitative
effects due to our earlier analysis – dζ

pre,post , the strength
of the T1 response, r, the fraction of T1 free, gp, the trig-
ger gain, [T0]b, the trigger threshold concentration, s, the
fraction of active T1 reaching genome, ge, the trigger gain
for active T1 transition, [T1]n, the threshold for T1, [T2]n,
the threshold for P(T1) = T2, gT2 , the gain for T2, ω, the
feedback strength, and ξ , the feedback amount for T1 =
1 − ξ . Note dζ

pre,post could be simply cλpre,post . The neuro-
transmitter triggers can alter many parameters important
to the creation of the BFV. For example, the maximum
sodium and potassium conductances can be altered via
the equation forT2. For sodium,T2(t,w) = hT2(t,w)[T2]n
becomes

[T2]n = δNa gmax
Na

hfT2
(t,w) = ω

1
ξ
hT2(t,w)

[T2](t,w) = hfT2
(t,w)[T2]n

gNa(t,w,V ) = (
gmax
Na +[T2] (t,w)

)
Mp

Na(t,V )Hq
Na(t,V )

There would be a similar set of equations for potassium.
Finally, neurotransmitters and other second messenger
triggers have delayed effects in general. So if the trigger T0
binds with a port P at time t0, the changes in protein levels
P(T1) might also need to be delayed by a factor τ ζ .

Abstract neuron design
We can see the general structure of a typical action poten-
tial is illustrated in Figure 8.
We can use the following points on this generic action

potential to construct a low dimensional feature vector of
Equation 12.

ξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t0,V0) start point
(t1,V1) maximum point
(t2,V2) return to reference voltage
(t3,V3) minimum point
(g, t4,V4) sigmoid tail model

(12)

Figure 8 Prototypical action potential.

where the model of the tail of the action potential is of the
form Vm(t) = V3 + (V4 − V3) tanh(g(t − t3)). Note that
V ′
m(t3) = (V4 −V3) g and so if we were using real voltage

data, we would approximate V ′
m(t3) by a standard finite

difference. The biological feature vector therefore stores
many of the important features of the action potential is a
low dimensional form. We note these include

• The interval [ t0, t1] is the duration of the rise phase.
This interval can be altered or modulated by
neurotransmitter activity on the nerve cell’s
membrane as well as second messenger signaling
from within the cell.

• The height of the pulse, V1, is an important indicator
of excitation.

• The time interval between the highest activation
level, V1 and the lowest, V3, is closely related to
spiking interval. This time interval, [ t1, t3], is also
amenable to alteration via neurotransmitter input.

• The height of the depolarizing pulse, V4, helps
determine how long it takes for the neuron to
reestablish its reference voltage, V0.

• The neuron voltage takes time to reach reference
voltage after a spike. This is the time interval by the
interval [ t3,∞].

• The exponential rate of increase in the time interval
[ t3,∞] is also very important to the regaining of
nominal neuron electrophysiological characteristics.

We have shown the BFV captures the characteristics of
the output pulse well enough to classify neurotransmitter
inputs on the basis of how they change the BFV (Peterson
and Khan 2006) and we will now use modulations of the
BFV induced by second messengers in our nodal com-
putations. The feature vector output of a neural object
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is due to the cumulative effect of second messenger sig-
naling to the genome of this object which influences the
action potential and thus feature vector of the object by
altering its complicatedmixture of ligand and voltage acti-
vated ion gates, enzymes and so forth. We can then define
an algebra of output interactions that we can use in build-
ing the models. We motivate our approach using the basic
Hodgkin - Huxley model which depends on a large num-
ber of parameters. Of course, more sophisticated action
potential models can be used, but the standard two ion
gate Hodgkin - Huxley model is sufficient for our needs
here.
Using the vector ξ from Equation 12, we can con-

struct the BVF. Note for the sigmoid tail model, we have
V ′
m(t3) = (V4 − V3) g and we can approximate V ′

m(t3) by
a standard finite difference. We pick a data point (t5,V5)
that occurs after the minimum – typically we use the volt-
age value at the time t5 that is 5 time steps downstream
from theminimum and approximate the derivative at t3 by
V ′
m(t3) ≈ V5−V3

t5 − t3 The value of g is then determined to be
g = V5−V3

(V4−V3)(t5 − t3) which reflects the asymptotic nature of
the hyperpolarization phase of the potential. Clearly, we
can model an inhibitory pulse ,mutatis mutandi.

The BFV functional form
In Figure 9, we indicated the three major portions of the
biological feature vector and the particular data points
chosen from the action potential which are used for the

Figure 9 The BFV functional form.

model. These are the two parabolas f1 and f2 and the sig-
moid f3. The parabola f1 is treated as the two distinct
pieces f11 and f12 given by

f11(t) = a11 + b11(t − t1)2 (13)
f12(t) = a12 + b12(t − t1)2 (14)

Thus, f1 consists of two joined parabolas which both have
a vertex at t1. The functional form for f2 is a parabola
with vertex at t3: f2(t) = a2 + b2(t − t3)2 Finally, the sig-
moid portion of the model is given by f3(t) = V3 + (V4 −
V3) tanh(g(t − t3)) We have also simplified the BFV even
further by dropping the explicit time point t4 and model-
ing the portion of the action potential after the minimum
voltage by the sigmoid f3. From the data, it follows that

f11(t0) = V0 = a2 + b11(t0 − t1)2, and
f11(t1) = V1 = a11 f12(t1) = V1 = a12, and
f11(t2) = V2 = a12 + b12(t2 − t1)2

This implies

a11 = V1, b11 = V0 − V1
(t0 − t1)2

, a12 = V1, and

b12 = V2 − V1
(t2 − t1)2

In a similar fashion, the f2 model is constrained by

f2(t2) = V2 = a2 + b2(t2 − t3)2 and f2(t3) = V3 = a2

We conclude that a2 = V3 and b2 = V2−V3
(t2−t3)2

. Hence, the
functional form of the BFV model can be given by the
mapping f of equation 15.

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V1 + V0−V1
(t0−t1)2

(t − t1)2, t0 ≤ t ≤ t1
V1 + V2−V1

(t2−t1)2
(t − t1)2, t1 ≤ t ≤ t2

V3 + V2−V3
(t2−t3)2

(t − t3)2, t2 ≤ t ≤ t3
V4 + (V4 − V3) tanh(g(t − t − 3)), t3 ≤ t < ∞

(15)

All of our parabolic models can also be written in the
form p(t) = ± 1

4β (t − α) where 4β is the width of the line
segment through the focus of the parabola. The models
f11 and f12 point down and so use the “minus” sign while
f2 uses the “plus”. By comparing our model equations with
this generic parabolic equation, we find the width of the
parabolas of f11, f12 and f2 is given by

4β11 = (t0 − t1)2

V1 − V0
= −1

b11
, 4β12 = (t2 − t1)2

V1 − V2
= −1

b12
and

4β2 = (t2 − t3)2

V2 − V3
= 1

b2
.

Modulation of the BFV parameters
We want to modulate the output of our abstract neu-
ron model by altering the BFV. The BFV itself consists of
11 parameters, but better insight, into how alterations of
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the BFV introduce changes in the action potential we are
creating, comes from studying changes in the mapping f
given in Section “The BFV functional form”. In addition
to changes in timing, t0, t1, t2 and t3, we can also consider
the variations of Equation 16.

⎡
⎢⎢⎢⎢⎢⎢⎣

�a11
�b11
�a12
�b12
�a2
�b2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�V1

�
(

V0−V1
(t0−t1)2

)
�V1

�
(

V2−V1
(t2−t1)2

)
�V3

�
(

V2−V3
(t2−t3)2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Maximum Voltage
�

( −1
4β11

)
�Maximum Voltage
�

( −1
4β12

)
�Minimum Voltage
�

(
1

4β2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

It is clear that modulatory inputs that alter the cap shape
and hyperpolarization curve of the BFV functional form
can have a profound effect on the information contained
in the “action potential”. For example, a hypothetical neu-
rotransmitter that alters V1 will also alter the latis rectum
distance across the cap f1. Further, direct modifications to
the latis rectum distance in any of the two caps f11 and
f12 can induce corresponding changes in times t0, t1 and
t2 and voltages V0, V1 and V2. A similar statement can be
made for changes in the latis rectum of cap f2. For exam-
ple, if a neurotransmitter induced a change of, say 1% in

4β11, this would imply that �

(
V1−V0
(t0−t1)2

)
= .04β0

11 where

β0
11 denotes the original value of β

0
11. Thus, to first order

.04β0
11 =

(
∂β11
∂V0

)∗
�V0 +

(
∂β11
∂V1

)∗
�V1 +

(
∂β11
∂t0

)∗
�t0

+
(

∂β11
∂t1

)∗
�t1

(17)

where the superscript ∗ on the partials indicates they are
evaluated at the base point (V0,V1, t0, t1). Taking partials
we find

∂β11
∂V0

= 2
(t0 − t1)2

(V1 − V0)2
= 2

V1 − V0
β0
11,

∂β11
∂V1

= −2
(t0 − t1)2

(V1 − V0)2
= − 2

V1 − V0
β0
11

∂β11
∂t0

= 2
t0 − t1
V1 − V0

= 2
t0 − t1

β0
11,

∂β11
∂t1

= −2
t0 − t1
V1 − V0

= − 2
t0 − t1

β0
11

Thus, Equation 17 becomes

.04β0
11 = 2�V0

V1 − V0
β0
11 − 2�V1

V1 − V0
β0
11 + 2�t0

1
t0 − t1

β0
11

− 2�t1
1

t0 − t1
β0
11

This simplifies to

.02(V1 − V0)(t0 − t1) = (�V0 − �V1)(t0 − t1)
− (�t0 − �t1)(V1 − V0)

Since we can do this analysis for any percentage r of β0
11,

we can infer that a neurotransmitter that modulates the
action potential by perturbing the “width” or latis rectum
of the cap of f11 can do so satisfying the equation

2r(V1 − V0)(t1 − t0) = (�V0 − �V1)(t0 − t1)
− (�t0 − �t1)(V1 − V0)

Similar equations can be derived for the other two width
parameters for caps f12 and f3. These sorts of equations
give us design principles for complex neurotransmitter
modulations of a BFV.

Modulation via the BFV ball and stickmodel
The BFV model we build consists of a dendritic sys-
tem and a computational core which processes BFV
input sequence to generate a BFV output. The standard
Hodgkin-Huxley equations tell us

Cm
dVM
dt

= IE − gMax
K (MK )4(Vm, t)(Vm − EK )

− gMax
Na (MNA)3(Vm, t)(HNA)(Vm, t)

×(Vm − ENa) − gL(Vm − EL).

Since the BFV is structured so that the action potential has
a maximum at t1 of value V1 and a minimum at t3 of value
V3, we have V ′

m(t1) = 0 and V ′
m(t3) = 0. This gives

IE(t1) = gMax
K (MK )4(V1, t1)(V1 − EK )

+ gMax
Na (MNA)3(V1, t1)(HNA)(V1, t1)(V1 − ENa)

+ gL(V1 − EL)
IE(t3) = gMax

K (MK )4(V3, t3)(V3 − EK )

+ gMax
Na (MNA)3(V3, t3)(HNA)(V3, t3)(V3 − ENa)

+ gL(V3 − EL)

From Figure 10 and Figure 11, we see that for typ-
ical action potential simulation responses, we have
m3(V1, t1)h(V1, t1) ≈ 0.35 and n4(V1, t1) ≈ 0.2. Further,
m3(V3, t3)h(V3, t3) ≈ 0.01 and n4(V3, t3) ≈ 0.4.
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Figure 10 The product MNA
3 HNA : Sodium Conductances during a Pulse 1100 at 3.0.

Thus,

IE(t1) = 0.20gMax
K (V1 − EK ) + 0.35gMax

Na (V1 − ENa)

+ gL(V1 − EL)

IE(t3) = 0.40gMax
K (V3 − EK ) + 0.01gMax

Na (V3 − ENa)

+ gL(V3 − EL)

Reorganizing,

IE(t1) = (
0.20gMax

K + 0.35gMax
Na + gL

)
V1

− (
0.20gMax

K EK + 0.35gMax
Na ENa + gLEL

)
IE(t3) = (

0.40gMax
K + 0.01gMax

Na + gL
)
V3

− (
0.40gMax

K EK + 0.01gMax
Na ENa + gLEL

)

Figure 11 The product MK
4: Potassium Conductances during a Pulse 1100 at 3.0.
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Solving for the voltages, we find

V1 = IE(t1) + 0.20gMax
K EK + 0.35gMax

Na ENa + gLEL
0.20gMax

K + 0.35gMax
Na + gL

V3 = IE(t3) + 0.40gMax
K EK + 0.01gMax

Na ENa + gLEL
0.40gMax

K + 0.01gMax
Na + gL

Thus,
∂V1

∂gMax
K

= 0.20EK
1

0.20gMax
K + 0.35gMax

Na + gL

+ IE(t1) + 0.20gMax
K EK + 0.35gMax

Na ENa + gLEL
0.20gMax

K + 0.35gMax
Na + gL

−1.0
0.20gMax

K + 0.35gMax
Na + gL

.20

This simplifies to

∂V1

∂gMax
K

= 0.20
0.20gMax

K + 0.35gMax
Na + gL

(EK − V1)

(18)

Similarly, we find

∂V1

∂gMax
Na

= 0.35
0.20gMax

K + 0.35gMax
Na + gL

(ENa − V1)

(19)

∂V3

∂gMax
K

= 0.40
0.40gMax

K + 0.01gMax
Na + gL

(EK − V3)

(20)

∂V3

∂gMax
Na

= 0.40
0.40gMax

K + 0.01gMax
Na + gL

(ENa − V3)

(21)

We also know that as t goes to infinity, the action potential
flattens andV ′

m approaches 0. Also, the applied current, IE
is zero and so we must have

0 = − gMax
K (MK )4(V∞,∞)(V∞ − EK )

− gMax
Na (MNA)3(V∞,∞)(HNA)(V∞,∞)(V∞ − ENa)

− gL(V∞ − EL)

Our hyperpolarization model is

Y (t) = V3 + (V4 − V3) tanh
(
g(t − t3)

)
We have V∞ is V4. Thus,

0 = − gMax
K (MK )4(V4,∞)(V4 − EK )

− gMax
Na (MNA)3(V4,∞)(HNA)(V4,∞)(V4 − ENa)

− gL(V4 − EL)

This gives, letting (MNA)3(V4,∞)(HNA)(V4,∞) and
(MK )4(V4,∞) be denoted by ((MNA)3(HNA))∗ and
((MK )4)∗ for simplicity of exposition,(
gMax
K

(
(MK )4

)∗ + gMax
Na ((MNA)3(HNA))∗ + gL

)
V4

=
(
gMax
K

(
(MK )4

)∗ EK + gMax
Na

(
(MNA)3(HNA)

)∗ ENa + gLEL
)

Hence, letting
(
(MNA)3(HNA)

)∗ ≡ (m3h)∗ and
(
(MK )4

)∗

≡ (n4)∗, we have

V4 = gMax
K n4(V4,∞)EK + gMax

Na m3(V4,∞)h(V4,∞)ENa + gLEL
gMax
K n4(V4,∞) + gMax

Na m3(V4,∞)h(V4,∞) + gL

We see

∂V4

∂gMax
K

= n4(V4,∞)

gMax
K n4(V4,∞) + gMax

Na m3(V4,∞)h(V4,∞) + gL
× (EK − V4)

(22)

∂V4

∂gMax
Na

= m3(V4,∞)h(V4,∞)

gMax
K n4(V4,∞) + gMax

Na m3(V4,∞)h(V4,∞) + gL
× (ENa − V4)

(23)

We can also assume that the area under the action poten-
tial curve from the point (t0,V0) to (t1,V1) is proportional
to the incoming current applied. If VIn is the axon - hillock
voltage, the impulse current applied to the axon - hillock
is gInVIn where gIn is the ball stick model conductance for
the soma. Thus, the approximate area under the action
potential curve must match this applied current. We have
1
2 (t1 − t0) (V1 − V0) ≈ gInVIn We conclude (t1 − t0) =
2gInVIn
V1−V0

. Thus

∂(t1 − t0)
∂gMax

K
= − t1 − t0

V1 − V0

∂V1

∂gMax
K

and (24)

∂(t1 − t0)
∂gMax

Na
= − t1 − t0

V1 − V0

∂V1

∂gMax
Na

Also, we know that during the hyperpolarization phase,
the sodium current is off and the potassium current is
slowly bringing the membrane potential back to the ref-
erence voltage. Now, our BFV model does not assume
that themembrane potential returns to the reference level.
Instead, by using

Y (t) = V3 + (V4 − V3) tanh
(
g(t − t3)

)
we assume the return is to voltage level V4. At the mid-
point, Y = 1

2 (V3 + V4), we find

1
2
(V4 − V3) = (V4 − V3) tanh

(
g(t − t3)

)
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Thus, letting u = g(t − t3), 1
2 = e2u−1

e2u+1 and we find u =
ln(3)
2 . Solving for t, we then have t∗ = t3 + ln(3)

2g . From t3
on, the Hodgkin - Huxley dynamics are

Cm
dVM
dt

= − gMax
K (MK )4(Vm, t)(Vm − EK )

− gL(Vm − EL).

We want the values of the derivatives to match at t∗. This
gives

g(V ∗ − V3) sech2
(
g(t∗ − t3)

) =

−gMax
K
Cm

(MK )4(V ∗, t∗)(V ∗ − EK ) − gL(V ∗ − EL)

where V ∗ = 1
2 (V3 +V4). Now g(t∗ − t3) = ln(3)

2 and thus
we find

g
2

(V4 − V3) sech2
(
g(t∗ − t3)

) =

−gMax
K
Cm

(MK )4(V ∗, t)(V ∗ − EK ) − gL
Cm

(V ∗ − EL)

g
2
(V4 − V3)

9
64

=

−gMax
K
Cm

(MK )4(V ∗, t∗)(V ∗ − EK ) − gL(V ∗ − EL)

Next, consider the magnitude of (MK )4(V ∗, t∗). We know
at t∗, (MK )4 is small from Figure 11. Thus, we will replace
it by the value 0.01. This gives

g
2

(V4 − V3)
9
64

= −0.01
gMax
K
Cm

(
1
2
(V4 + V3) − EK

)

− gL
Cm

(
1
2
(V4 + V3) − EL

)

Simplifying, we have

9g
128

(V4 − V3) =
(
0.01

gMax
K
Cm

EK + gL
Cm

EL

)

− 1
2

(
0.01

gMax
K
Cm

+ gL
Cm

)
(V4 + V3)

9g
64

=
(
0.01

gMax
K
Cm

EK + gL
Cm

EL

)
1

V4 − V3

−
(
0.01

gMax
K
Cm

+ gL
Cm

)
V4 + V3
V4 − V3

We can see clearly from the above equation, that the
dependence of g on gMax

K and gMax
Na is quite compli-

cated. However, we can estimate this dependence as fol-
lows. We know that V3 + V4 is about the reference

voltage, −65.9mV. If we approximate V3 by the potassium
battery voltage, Ek = −72.7mV and V4 by the reference
voltage, we find V3+V4

V4−V3
≈ −138.6

6.8 = −20.38 and 1
V4−V3

≈
1
6.8 = 0.147. Hence,

9Cmg
64

= 0.147
(
0.01gMax

K EK + gLEL
)

+ 20.38
(
0.01gMax

K + gL
)

= (0.0147EK + 2.038EL) gMax
K

+gL (0.0147EL + 20.38)

Thus, we find

∂g
∂gMax

K
= 64

9Cm
(0.0147EK + 2.038EL) (25)

This gives ∂g
∂gMax

K
≈ −710.1. Equation 25 shows what our

intuition tells us: if gMax
K increases, the potassium current is

stronger and the hyperpolarization phase is shortened. On
the other hand, if gMax

K decreases, the potassium current is
weaker and the hyperpolarization phase is lengthened.

Multiple inputs
Consider a typical input V (t) which is determined by
a BFV vector. Without loss of generality, we will focus
on excitatory inputs in our discussions. The input con-
sists of a three distinct portions. First, a parabolic cap
above the equilibrium potential determined by the val-
ues (t0,V0), (t1,V1), (t2,V2). Next, the input contains half
of another parabolic cap dropping below the equilibrium
potential determined by the values (t2,V2) and (t3,V3).
Finally, there is the hyperpolarization phase having func-
tional form H(t) = V3 + (V4 − V3) tanh(g(t − t3)). Now
assume two inputs arrive at the same electronic distance
L. We label this inputs as A and B as is shown in Figure 12.
For convenience of exposition, we also assume tA3 < tB3 ,

as otherwise, we just reverse the roles of the variables in
our arguments. In this figure, we note only the minimum
points on the A and B curves. We merge these inputs into
a new input VN prior to the hyperpolarization phase as
follows:

tN0 = tA0 + tB0
2

, VN
0 = VA

0 + VB
0

2
, and tN1 = tA1 + tB1

2

VN
1 = VA

1 + VB
1

2
, tN2 = tA2 + tB2

2
, and VN

2 = VA
2 + VB

2
2

This constructs the two parabolic caps of the new resul-
tant input by averaging the caps of VA and VB. The
construction of the new hyperpolarization phase is more
complicated. The shape of this portion of an action poten-
tial has a profound effect on neural modulation, so it is
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Figure 12 Two action potential inputs into the dendrite subsystem.

very important to merge the two inputs in a reasonable
way. The hyperpolarization phases ofVA andVB are given
by

HA(t) = VA
3 +

(
VA
4 − VA

3

)
tanh

(
gA(t − tA3 )

)
HB(t) = VB

3 + (
VB
4 − VB

3
)
tanh

(
gB(t − tB3 )

)
We will choose the 4 parameters V3,V4, g, t3 so as to
minimize

E =
∫ ∞

tA3

(
H(t) − HA(t)

)2 + (
H(t) − HB(t)

)2 dt

For optimality, we find the parameters where ∂E
∂V3

, ∂E
∂V4

, ∂E
∂g

and ∂E
∂t3 are 0. Now,

∂E
∂V3

=
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

∂H
∂V3

dt

Further,

∂H
∂V3

= 1 − tanh
(
g(t − t3)

)

so we obtain

0 =
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

× (
1 − tanh

(
g(t − t3)

))
dt (26)

We also find

∂E
∂V4

=
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

× (
tanh

(
g(t − t3)

))
dt

as

∂H
∂V4

= tanh
(
g(t − t3)

)
The optimality condition then gives

0 =
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

tanh
(
g(t − t3)

)
dt (27)

Combining equation 26 and equation 27, we find

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

tanh
(
g(t − t3)

)
dt.

It follows after simplification, that

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

dt

(28)

The remaining optimality conditions give

∂E
∂g

=
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

∂H
∂g

dt = 0

∂E
∂t3

=
∫ ∞

tA3
2

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

∂H
∂t3

dt = 0

We calculate

∂H
∂g

= (V4 − V3)(t − t3) sech2
(
g(t − t3)

)
∂H
∂t3

= −(V4 − V3) g sech2
(
g(t − t3)

)
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Thus, we find

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

×(V4 − V3)(t − t3) sech2
(
g(t − t3)

)
dt

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

×(V4 − V3) g sech2
(
g(t − t3)

)
dt.

This implies

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

t sech2
(
g(t − t3)

)
dt

− t3
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

sech2
(
g(t − t3)

)
dt

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

sech2
(
g(t − t3)

)
dt.

This clearly can be simplified to

0 =
∫ ∞

tA3

{(
H(t) − HA(t)

)
+ (

H(t) − HB(t)
)}

t

sech2
(
g(t − t3)

)
dt (29)

We can then satisfy equation 28 and equation 29 by
making

(H(t) − HA(t)) + (H(t) − HB(t)) = 0. (30)

Equation 30 can be rewritten as

0 =
(
V3 − VA

3 + VB
3

2

)
+ (V4 − V3) tanh

(
g(t − t3)

)

− VB
4 − VB

3
2

tanh
(
gB

(
t − tB3

)) − VA
4 − VA

3
2

tanh
(
gA

(
t − tA3

))
(31)

This equation is true as t → ∞. Thus, we obtain the
identity

0 =
(
V3 − VA

3 + VB
3

2

)
+ (V4 − V3) − VB

4 − VB
3

2

− VA
4 − VA

3
2

Upon simplification, we find 0 = V3 − VA
3 +VB

3
2 and 0 =

V4− VA
4 +VB

4
2 . This leads to our choices forV3 and V4. V3 =

VA
3 +VB

3
2 and V4 = VA

4 +VB
4

2 Equation 31 is also true at t = tA3
and t = tB3 . This gives

0 =
(
V3 − VA

3 + VB
3

2

)
+ (V4 − V3) tanh

(
g
(
tA3 − t3

))

− VB
4 − VB

3
2

tanh
(
gB

(
tA3 − tB3

))
(32)

0 =
(
V3 − VA

3 + VB
3

2

)
+ (V4 − V3) tanh

(
g
(
tB3 − t3

))

− VA
4 − VA

3
2

tanh
(
gA

(
tB3 − tA3

))
(33)

For convenience, define wA
34 = VA

4 −VA
3

2 and wB
34 = VB

4 −VB
3

2 .
Then, using equation 33 and equation 33, we find

0 = (V4 − V3) tanh
(
g
(
tA3 − t3

))
− wB

34 tanh
(
gB

(
tA3 − tB3

))
0 = (V4 − V3) tanh

(
g
(
tB3 − t3

))
− wA

34 tanh
(
gA

(
tB3 − tA3

))
This is then rewritten as

tanh
(
g
(
tA3 − t3

))
= wB

34 tanh
(
1gB

(
tA3 − tB3

))
(V4 − V3)

tanh
(
g
(
tB3 − t3

)) = wA
34 tanh

(
gA

(
tB3 − tA3

))
(V4 − V3)

Defining

zA = wB
34 tanh

(
gB

(
tA3 − tB3

))
V4 − V3

and

zB = wA
34 tanh

(
gA

(
tB3 − tA3

))
V4 − V3

we find that the optimality conditions have led to the two
nonlinear equations for g and t3 given by

tanh
(
g
(
tA3 − t3

))
= zA and (34)

tanh
(
g
(
tB3 − t3

)) = zB

Note we thus have

zA = wB
34 tanh

(
gB

(
tA3 − tB3

))
V4 − V3

=

−wB
34 tanh

(
gB

(
tB3 − tA3

))
wA
34 + wB

34

zB = wA
34 tanh

(
gA

(
tB3 − tA3

))
V4 − V3

= wA
34 tanh

(
gA

(
tB3 − tA3

))
wA
34 + wB

34
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Hence,

zA > − wB
34

wA
34 + wB

34
> −1 and zB <

wA
34

wA
34 + wB

34
< 1

so that zA < 0 < zB. It seems reasonable that the optimal
value of t3 should lie between tA3 and tB3 . Note equations 34
precludes the solutions t3 = tA3 or t3 = tB3 . To solve the
nonlinear system for g and t3, we will approximate tanh by
its first order Taylor Series expansion. This seems reason-
able as we don’t expect g(tA3 − t3) and g(tA3 − t3) to be far
from 0. This gives the approximate system

g
(
tA3 − t3

)
≈ zA and g

(
tB3 − t3

) ≈ zB (35)

Using these, we find g = zB
tB3 −t3

and we obtain
zB

tB3 −t3

(
tA3 − t3

) = zA. This can be simplified as follows:

tA3 − t3
tB3 − t3

= zA
zB

,
(
tA3 − t3

)
zB = (

tB3 − t3
)
zA and

tA3 zB − tB3 zA = t3 (zB − zA)

Thus, we find the optimal value of t3 is approximately

t3 = tA3 zB − tB3 zA
zB − zA

(36)

Using the approximate value of t3, we find the optimal
value of g can be approximated as follows:

g = zB

tB3 − tA3 zB−tB3 zA
zB−zA

= zB(zB − zA)

tB3 (zB − zA) − (
tA3 zB − tB3 zA

)
= zB(zB − zA)

tB3 zB − tA3 zB
= zB − zA

tB3 − tA3
Hence, we find the approximate optimal value of g is

g = zB − zA
tB3 − tA3

(37)

It is easy to check that this value of t3 lies in
(
tA3 , t

B
3
)
as we

suspected it should and that g is positive. We summarize
our results. Given two input BFVs, the sigmoid portions
of the incoming BFVs combine into the new sigmoid given
by

H(t) = V3 + (V4 − V3) tanh
(
g(t − t3)

)
H(t) = VA

3 + VB
3

2
+(

VA
4 − VA

3
2

+ VB
4 − VA

3
2

)

tanh
(
zB − zA
tB3 − tA3

(
t − tA3 zB − tB3 zA

zB − zA

))

Given an input sequence of BFV’s into a port on the den-
drite of an accepting neuron {Vn,Vn−1, . . . ,V1} the pro-
cedure discussed above computes the combined response

that enters that port at a particular time. The inputs into
the dendritic system are combined pairwise; V2 and V1
combine into a Vnew which then combines with V3 and so
on. We can do this at each electrotonic location.
Pre-neurons can supply input to the dendrite cable at

electronic positions w = 0 to w = 4. These inputs gen-
erate an ESP or ISP via many possible mechanisms or
they alter the structure of the dendrite cable itself by the
transcription of proteins. The output of a pre-neuron is a
BFV which must then be associated with an abstract trig-
ger as we have discussed in earlier chapters. The strength
of a BFV output will be estimated as follows: The area
under the first parabolic cap of the BFV can be approxi-
mated by the area of the triangle,A, formed by the vertices
(t0,V0), (t1,V1), (t2,V2). This area is shown in Figure 13.
The area is given by A = 1

2 (V2 − V0)(t2 − t0).
The size of this area then allows us to determine the first

and second messenger contributions this input makes to
the post-neuron.

Results and discussion
In Erlang, (Armstrong 2013), the fundamental unit of
calculation in the process. Each process does not share
information with any other process and hence, the mem-
orymodel followed is based onmessage passing. There are
other approaches such as shared memory with locks, soft-
ware transactional memory ( used in Clojure ) and futures
and promises. We focus on Erlang’s model as we feel a
neuron in a brain model is a computational unit which
performs a calculation on the basis of current inputs (i.e.
messages) and sends its output to other nodes based on
its forward link set. In Erlang, the message passing is
asynchronous (as is the case in the BFV outputs a brain
model’s node sends out to its recipients) and hence data
must be copied for the message. Hence, since we want to
have many node and edge functions in the brain model,
G(N ,E), it is important to keep the amount of calcula-
tion in each node and edge low. To achieve that, we need
to approximate the neuronal calculations as we have been
discussing here. Instead of solving systems of ordinary

Figure 13 The EPS triangle approximation.
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or partial differential equations are each node, we have
found approximations to the solutions which capture a
reasonable amount of the information processing com-
plexity that is there. Also, the approach we use allows us
to pay close attention to the architectural skeleton given
by the graph G(N ,E) and separate the processing func-
tion from it. Another approach is to use amiddle ware tool
such as CORBA implemented in C++ using omniORB-
4.1.4 to handle multiple core/ multiple CPU models, but
the functional programming approach using Erlang with
no sharedmemory is better suited to this task. In addition,
we want the model to be able to use both first and second
messenger triggers even though the second messenger
inputs alter the computational abilities of the node they
effect. We handle this by allowing the second messen-
ger triggers to alter the low dimensional BFV. To indicate
how this would be done, let’s consider a model with neu-
rons that are first messenger types (i.e. alter the sodium
and potassium gate parameters in our simple standard
Hodgkin-Huxley model ) and two additional neuron types
that generate secondmessenger triggers such as dopamine
and serotonin. Let’s call these classes NF , ND and NS , We
are aware the situation is much more complicated but this
simple thought experiment will show how our approxima-
tions are used. Consider a node N = yi in the graph and
recall we are using the general update strategy given by

yi(t + 1) = Ii +
∑
j∈B(i)

Ej→i(t) Yj(t) where

Yi(t + 1) = σi(t)(yi(t)).

where each σ represents a nodal process and each Ej→i
an edge process as modeled in Erlang with y denoting the
input to a node and Y , the output from the node.

• When the process that handles this node looks at its
input queue, it sees messagesM organized into the
familiesMF ,MD andMS . We use the combining
inputs algorithm to merge multiple inputs in each
message class into one input which we will denote by
IF , ID and S.

• The inputs IF , ID and S then generate an trigger
update using the EPS/ IPS triangle approximation.
given by aF , aD, and aS . The latter two are second
messengers. Recall, a second messenger trigger T
creates activated kinase PK/U and each unit of T
creates λ units of PK/U where λ is quite large –
perhaps 10,000 or more times the base level of
[PK/U ]e. Thus, letting rPK/U = β and
K = k1k2k3

k−1k−2k−3
, we know

δT = (2β + β2) K [PK/U ]2e . Denote the actual
trigger updates by δF , δD, and δS . Hence, we can

model each of the two second messenger trigger
changes as

δD ∝ (2βD + β2
D)aD and δS ∝ (2βS + β2

S )aS .

From our discussion of how the BFV is altered by
triggers given in Section “Modulation of the BFV
parameters”, it is clear a second messenger trigger
update initiates changes in the BFV. The literature on
the effects a neurotransmitter has on the action
potential of an excitable neuron gives us specific
information about what parts of the action potential
are changed. We do not discuss these details here for
brevity. Suffice it to say, we can assign each
neurotransmitter to a BVF alteration. Thus, letting
the proportionality constants above be KD and KS

δD = (
2βD + β2

D
)
aDKD =⇒ ∇D(BFV )

δS = (
2βS + β2

S
)
aSKS =⇒ ∇S(BFV )

where the gradients here are the specific changes in
the 11 parameters of the BFV that each
neurotransmitter causes. Also, recall the efficacy of
the second messenger release depends ru, the rate of
re-uptake in the connection between two nodes, the
second messenger destruction rate rd , the rate of
second messenger release, rr and the density of the
second messenger receptor, nd . The triple (ru, rd, rr))
thus determines a net increase or decrease of second
messenger concentration between two nodes:
rr − ru − rd ≡ rnet . The efficacy of a connection
between nodes is then proportional to the product
rnet × nd . The density of the second messenger
receptor is amenable to second messenger alterations
via triggers as well. If we change our update equations
to

δD = (rr − ru − rd)
(
2βD + β2

D
)
aDKD

δS = (
2βS + β2

S
)
aSKD.

by absorbing the nd term into the proportionality
constants, we have a mechanism that allows us to
model neurotransmitter interaction in the synaptic
cleft.

• For the input IF which is a first messenger type, we
know this will cause a change in maximum sodium or
potassium conductance and perhaps more
complicated combinations. These were explored in
Section “Modulation of the BFV parameters”. For
example, we can estimate how the parameter V1 of
the BFV changes via

∂V1

∂gMax
Na

= 0.35
0.20gMax

K + 0.35gMax
Na + gL

(ENa − V1)
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This tells us

δV1 =
(

0.35
0.20gMax

K + 0.35gMax
Na + gL

(ENa − V1)

)

δgMax
Na .

Then, from Section “Second messengers”, we know

δgNa(t,V ) = gmax
Na (eδNa σ ([P(T1)] , 0, gNa) )

Mp
Na(t,V ) Hq

Na(t,V )

which we can approximate using the input aF . Thus,
δgNa(t,V ) ∝ aF with proportionality constant KF .
Thus,

δV1 =
(

0.35
0.20gMax

K + 0.35gMax
Na + gL

(ENa − V1)

)

KFaF

is a reasonable approximation to this alteration of the
BFV due to this first messenger input.

Hence, our processing node handles the messages in its
input queue using simple arithmetic and a few stored
parameters. Each edge process computes the rnet term
required but it is still simpler as it only has to connect the
BFV from one neuron to another.

Conclusions
We have shown how to approximate neuronal computa-
tion for both first and second messenger systems so that
a graph model G(N ,E) can be implemented efficiently
in a modern functional programming language such as
Erlang. Other languages are possible but our focus was on
Erlang alone here. The simulation of a brain model then
can take advantage of as many cores as are available on
our hardware. Erlang is not designed for heavy computa-
tion, so this is why we have spent so much time discussing
ways to approximate neural computations at each node
and the synaptic processing. It is important to note that
new and interesting simulations require us to pay much
closer attention to the actual hardware we will be using.
Hence, while the details of the multicore use might change
with new hardware, the basic principles of how we com-
bine computational algorithms to hardware via software
will be retained.
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