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Abstract

computational nodes

We present an introduction to the modeling of networks of nodes which parse the information presented to them
into an output. One example is the nodes are excitable neurons which are collected into a nervous system for an
animal whether invertebrate or vertebrate. We will focus on the development of the ideas and tools that might help
us understand how to build a model of such a system being careful to explain the many approximations or model
errors we make along the way. We start with a discussion of low level biophysical concepts such as the cable equation
and the Hodgkin - Huxley model and end with graph based models of computation. We also include motivational
arguments that show hardware and software issues in neural models are interwined.
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Review

In this article, we will discuss some of the principles
behind models of biological information processing. As
usual, we therefore use tools at the interface between
science, mathematics and computer science. We want
to find the right abstraction of the wealth of biological
detail that is available; the right design to guide us in the
development of our modeling environment. The details of
how proteins interact, how genes interact and how neu-
ral modules interact to generate the high level outputs
we find both interesting and useful are known to some
degree but it is quite difficult to use this detailed informa-
tion to build models of high level function. In all models
of this type, we are asking high level questions and won-
dering how we might create a model that gives us some
insight. All such models have built in assumptions and
we must train ourselves to think abut these carefully. We
must question the abstractions of the messiness of real-
ity that led to the model and be prepared to adjust the
modeling process if the world as experienced is different
from what the model leads them to expect. There are three
primary sources of error when we build models. First,
there is the error we make when we abstract from real-
ity; we make choices about which things we are measuring
are important. We make further choices about how these
things relate to one another. Perhaps we model this with
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mathematics, diagrams, words etc; whatever we choose
to do, there is error we make. This is called Model error.
Then, we make error when we use computational tools
to solve our abstract models which is called Truncation
error. Finally, since we can not store numbers exactly in
any computer system, there is always a loss of accuracy
because of this. This is called Round Off error. All three of
these errors are always present and so the question is how
do we know the solutions our models suggest relate to the
real world? We must take the modeling results and go back
to original data to make sure the model has relevance.
With all this said, let’s start looking at the fundamen-
tal building blocks of information transmission in a living
neural system. The neurotransmitters and other signaling
molecules to accomplish coordination of effort between
individual cells were laid down probably in Cambrian
times, so these pathways are very old. However, control
of a multi-cellular organism such as ourselves does not
necessarily require a neural architecture like ours. Recent
work in the Ctenophore genome has shown us a new
neural architecture for control (see (Moroz et al. 2014),
(Callaway 2014), (Staff 2013) and (Ryan et al. 2013)). Also,
single cells can be controlled in what appears to be the
same way a multi-cellular organism can be as is seen in
the video (Nautilus 2014). This implies our framework for
understanding how to build useful neural architectures
for our goals (understanding cognition, drug treatment,
autonomous movement and so forth) does not have to
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be tied to the architectures we see in invertebrate and
vertebrate animals. This implies we are not limited to
ideas from invertebrate and vertebrate physiology to solve
problems in computational cognition modeling.

The physical laws of ion movement

We start with a simple cell and ion movement in and out
of the cell ((Johnson and Wu 1995), (Weiss 1996a) and
(Weiss 1996b)). These references provide even more detail
and you should feel free to look at these books. However,
the amount of detail in them can be overwhelming, so
we offer a short version with just enough detail for our
mathematical/ biological engineer and computer scientist
audience.

An ion ¢ can move across a membrane due to sev-
eral forces. First, let’s talk about what concentration of a
molecule means. For any molecule b, the concentration
of the ion is denoted by the symbol [ 5] and is measured
in % Now, we hardly ever measure concentration
in molecules per unit volume; instead we use the fact
that there are Ny = 6.02 x 1023 molecules in a Mole
and usually measure concentration in the units "C%g“ =
M where for simplicity, the symbol M denotes the con-
centration in Moles per cm?. The special number Ny is
called Avogadro’s Number. The force that arises from
the rate of change of the concentration of molecule b acts
on the molecules in the membrane to help move them
across. The amount of molecules that move across per
unit area due to this force is labeled the diffusion flux

. X something
as flux is defined to a rate of transfer (= - ) per

unit area.

There are several basic laws to consider. Ficke’s Law
of Diffusion is an empirical law which says the rate of
change of the concentration of molecule b is proportional
to the diffusion flux and is written in mathematical form
as Jgyy = —D % where g7 is diffusion flux which has

units of molecules
cm?—second’

2
—eong and [B] is the concentration of molecule b

which has units of % The minus sign implies that
flow is from high to low concentration; hence diffusion
takes place down the concentration gradient. Note that D
is the proportionality constant in this law.

Ohm’s Law of Drift relates the electrical field due to
an charged molecule, i.e. an ion, ¢, across a membrane to
the drift of the ion across the membrane where drift is
the amount of ions that moves across the membrane per
unit area. In mathematical form Jgz = — 9, E where it
is important to define our variables and units very care-
fully. We have /gy is the drift of the ion which has units

of % and 9, is electrical conductivity which has

. molecules
units of volt—cm—second

charge on the ion as an integer; i.e. the valence of C/™

D is the diffusion coefficient which has

units of

Now the valence of ion ¢ is the
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is —1 and the valence of Ca™? is +2. We let the valence of
the ion ¢ be denoted by z. It is possible to derive the follow-
ing relation between concentration [c] and the electrical
conductivity d¢; : 9y = p z [¢] where dimensional anal-

ysis shows us that the proportionality constant u, called
2
cm

Yolt—second Hence, we can

rewrite Ohm’s Law of Drift as Jz;s = —puz(c] %. We

see that the drift of charged particles goes against the
electrical gradient.

There is also a relation between the diffusion coefficient
D and the mobility  of an ion which is called Einstein’s
Relation. It says D = % @ where « is Boltzmann’s

the mobility of ion ¢, has units

constant which is 1.38 10723 j‘f,%e, T is the tempera-

ture in degrees Kelvin and ¢ is the charge of the ion ¢

which has units of coulombs. We note electrical work

has units of coulombs - volts. Hence, we see % i has
volt—coulomb

units °K coulfmbs valtirglezcond = % which
reduces to the units of D. Further, we see that Einstein’s
Law says that diffusion and drift processes are additive
because Ohm’s Law of Drift says Jgz is proportional
to u which by Einstein’s Law is proportional to D and
hence Jdift-

The membrane capacitance of a typical cell is one micro
fahrad per unit area. Typically, we use F to denote the
unit fahrads and the unit of area is cm?. Since the inside
and outside of the cell are separated by a biological mem-
brane of the type, we can ask what if one side of the
cell had more or less ions than the other? These uncom-
pensated ions would produce a voltage difference across
the membrane because charge is capacitance times volt-
age (g = cV). Hence, if we wanted to produce a 100
mV potential difference across the membrane, we can
compute how many uncompensated ions, [ c] would be
needed: §[c] = % x 1V = 1077 % This is
a typical voltage difference across a biological membrane
in an excitable nerve cell. For a typical cell the total num-
ber of ions inside the cell for a .5M solution is ~ 101°
ions. We can show the number of uncompensated ions
per cell to get this voltage difference is 4.95 x 107 ions
which is only &~ 1077% of the total. Hence, the voltage
differences relevant to excitable nerve cell are achieved
by moving a tiny fraction of the ions available across the
membrane.

The Nernst - Planck equation

Under physiological conditions, ion movement across the
membrane is influenced by both electric fields and con-
centration gradients. Let J denote the total flux, then we
will assume that we can add linearly the diffusion due
to the molecule ¢ and the drift due to the ion ¢ giving
J = Jarig + Jaigr Thus, applying Ohm’s Law of Drift and

Ficke’s Law, we have ] = —u z [] %—‘; — D %Cc] Next, we
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use Einstein’s Relation to replace the diffusion constant D
to obtain what is called the Nernst - Planck equation.

vV kT dc]

J=—pzld oo =

q ox 1
o (el 2L T 2 (
-k 0x q ox

We can rewrite this result by moving to units that are
—_pmoles__ o do this, note that L has the proper units
cm?—second Ny

and using the Nernst-Planck equation we obtain

J oV «T dlc]
= (5 ) ?

q Ox
The relationship between charge and moles is given
by Faraday’s Constant, F, which has the value F =
96, 480 %. Hence, the total charge in a mole of ions
is the valence of the ion times Faraday’s constant F, zF.
Multiplying this equation by zF on both sides we obtain

Lap o A (g 2V ST 00)

Z 3
Ny © Na x| q ox ®)

We can show & qT R

equation 3 giving

T and so they are interchangeable in

J o o vV [C]
I=_—2zF = —— F RT — | (4
Ny N ( [e] — o T2 (4)
where the symbol I denotes this current density “”%* that

we obtain with this equation. The current [ is the on cur-
rent that flows across the membrane per unit area due to
the forces acting on the ion c. Clearly, the next question
to ask is what happens when this system is at equilibrium
and the net current is zero? In this case, a straightforward
integration gives

Ec — E ln [C]out

zF [clin

where we let [c],,: be the concentration of ¢ outside the
cell and [c];, be the concentration of ¢ inside. This impor-
tant equation is called the Nernst equation and is an
explicit expression for the equilibrium potential of an ion
species in terms of its concentrations inside and outside
of the cell membrane. For example, in frog muscle, KT has
an interior concentration of 124.0 mM and an outer con-
centration of 2.25 mM leading to an equilibrium voltage
of —101.52 mV.

(5)

Electrical signaling

The electrical potential across the membrane is deter-
mined by how well molecules get through the membrane
(its permeability) and the concentration gradients for the
ions of interest. If there are multiple ions involved, what
determines the resting potential? Recall Ohm’s Law for a
simple circuit: the current across a resistor is the voltage
across the resistor divided by the resistance; in familiar
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terms [ = % using time honored symbols for current,

voltage and resistance. It is easy to see how this idea fits
here: there is resistance to the movement of an ion through
the membrane. Since / = % V, we see that the ion current
through the membrane is proportional to the resistance
to that flow. The term % seems to be a nice measure of
how well ions flow or conduct through the membrane. We
will call % the conductance of the ion through the mem-
brane. Conductance is generally denoted by the symbol
g. Clearly, the resistance and conductance associated to a
given ion are things that will require very complex mod-
eling even if they are pretty straightforward concepts, but
for now, for an ion ¢, we will use I, = g. (V;,;, — E.) where
E. is the equilibrium voltage for the ion c that comes from
the Nernst Equation, I, is the ionic current for ion ¢ and g,
is the conductance. Finally, we denote the voltage across
the membrane to be V,,,. Note the difference between the
membrane voltage and the equilibrium ion voltage pro-
vides the electromotive force or emf that drives the ion.
Consider Figure 1. We are thinking of a patch of mem-
brane as a parallel circuit with one branch for each of the
three ions K™, Nat and CI~ and a branch for the capaci-
tance of the membrane. The branch for CI~ in the figure
is labeled as a leakage current with conductance g; and
Nernst voltage E;. Later in the Hodgkin - Huxley model,
we will let this leakage current include things other than
the chlorine currents, but for now, it is just what we get
from the chlorine ion. We think of this patch of membrane
as having a voltage difference of V;;, across it. In general,
there will current that flows through each branch. These
currents are ix, ing, ir = icy and i, where I, denotes the
capacitative current. For right now, we will assume all of
these conductances are constant. Each of our ionic cur-
rents have the form i;,, = g (Vix — E.) where V,, as
mentioned, is the actual membrane voltage, ¢ denotes our
ion, g, is the conductance associated with ion ¢ and E,
is the Nernst equilibrium voltage). Hence for three ions,
potassium (KT), sodium (Na™) and chlorine (CI™), we
have ix = gk (Vi — Ek), ina = gva (Vin — Eng) and
ici = gc1 Viw — Ecp). There is also a capacitative cur-
rent. We know the voltage drop across the capacitor C,,

is given by {; hence, the charge across the capacitor is

Cu Vin 1mply1ng the capacitative current is i,,, = Cy, d:i/t’”

At steady state, iy, is zero and the ionic currents must
sum to zero giving ix + ingy + iy = 0. Hence, 0 =
8k Vin — Ex) +8Na (Vi — ENa) + 8c1 (Vin — Ecy) leading to
a Nernst Voltage equation for the equilibrium membrane
voltage Vj,, of a membrane permeable to several ions:

_ 8K Ex + 8Na Exa
gx + &Na + gci 8K + gNa + gci
T 8ci E
8K + gNa + gci

(6)
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Figure 1 A simple membrane model.

We usually rewrite this in terms of conductance ratios: ry,
is the gn,; to gi ratio and ry is the g¢; to gi ratio:

+ "Na
14+rng +ra

ENa

Vin = E
14+rng+ra

rc
14+rng +ra

(7)

Eq

Hence, if we are given the needed conductance ratios,
we can compute the membrane voltage at equilibrium for
multiple ions.

lon flow
Our abstract cell is a spherical ball which encloses a fluid
called cytoplasm. The surface of the ball is actually a
membrane with an inner and outer part. Outside the cell
there is a solution called the extracellular fluid. Both the
cytoplasm and extracellular fluid contain many molecules,
polypeptides and proteins disassociated into ions as well
as sequestered into storage units. We are now interested in
what this biological membrane is and how we can model
the flow of ionized species through it. This modeling is
difficult because some of the ions we are interested in can
diffuse or drift across the membrane and others must be
allowed entry through specialized holes in the membrane
called gates or even escorted, i.e. transported or pumped,
through the membrane by specialized helper molecules.
In Figure 2, we see a schematic of a typical voltage
gate. Note that the inside of the gate shows a structure
which can be in an open or closed position. The outside
of the gate has a variety of molecules with sugar residues

which physically extend into the extracellular fluid and
carry negative charges on their tips. At the outer edge
of the gate, you see a narrowing of the channel opening
which is called the selectivity filter. Proteins can take
on very complex three dimensional shapes. Often, their
actual physical shape can switch from one form to another
due to some external signal such as voltage. This is called
a conformational change. In a voltage gate, the molecule
which can block the inner throat of the gate moves from its
blocking position to its open position due to such a con-
formational change. In fact, this molecule can also be in
between open and closed as well. The voltage gated chan-
nel is actually a protein macromolecule which is inserted
into an opening in the membrane called a pore. This
macromolecule is quite big (1800 - 4000 amino acids)
with one or more polypeptide chains and 100’s of sugar
residues hang off the extracellular face. When open, the
channel is a water filled pore with a fairly large inner diam-
eter which would allow the passage of many things except
that there is one narrow stretch of the channel called a
selectivity filter which inhibits access. The inside of the
pore is lined with hydrophilic amino acids which there-
fore like being near the water in the pore and the outside
of the pore is lined with hydrophobic amino acids which
therefore dislike water contact. These therefore lie next to
the lipid bilayer. Ion concentration gradients can be main-
tained by selective permeabilities of the membrane to var-
ious ions. Most membranes are permeable to K™, maybe
CI~ and much less permeable to Na™ and Ca*2. This
type of passage of ions through the membrane requires
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Lipid Bilayer

outside cell

voltage sensor:
region sensitive
to Uy,

inside
selectivity
4= filer
open gate dueto
conformational
charge
phosphate group

sugar esidues

Figure 2 Typical voltage channel.

no energy and so it is called the passive distribution of Excitable cells

the ions. There are also many pumps within a cell that  There are specialized cells in most living creatures called
move substances in or out of a cell with or against a  neurons which are adapted for generating signals which
concentration gradient, but we won'’t discuss them here. are used for the transmission of sensory data, control of
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movement and cognition through mechanisms we don’t
fully understand. However, a neuron is an example of what
is called an excitable cell whose membrane is studded with
many voltage gated sodium and potassium channels. The
equilibrium voltage of the cell membrane in terms of the
conductances of each ion is

Vo' = £K Ex + ENa Eng
gK + &Na + gci gK + 8Na + gci
+ 8ci Ec
gK + 8gNa + gci

The conductance model allows us to understand this sud-
den increase in voltage across the membrane in terms of
either sodium to potassium conductance ratio shifts. In an
excitable cell, under certain circumstances, the rest poten-
tial across the membrane can be stimulated in the right
manner to cause a rapid rise in the equilibrium potential
of the cell, followed by a sudden drop below the equi-
librium voltage and then ended by a slow increase back
up to the rest potential. The shape of this wave form is
very characteristic and is shown in Figure 3. This type of
wave form is called an action potential and is a fundamen-
tal characteristic of excitable cells. In the figure, we draw
the voltage across the membrane and simultaneously we
draw the conductance curves for the sodium and potas-
sium jons. Since conductance is reciprocal resistance, a
spike in sodium conductance, for example, is proportional
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to a spike in sodium ion current. So in the figure we see
that sodium current spikes first and potassium second.

Now that we have discussed so many aspects of cellu-
lar membranes, we are at a point where we can develop
a qualitative understanding of how this behavior is gen-
erated. We can't really understand the dynamic nature of
this pulse yet (that is its time and spatial dependence) but
we can explain in a descriptive fashion how the potassium
and sodium gates physical characteristics cause the behav-
ior we see in Figure 3. A typical sodium channel looks like
Figure 2. The drawing of a potassium channel will be virtu-
ally identical. When you look at the drawing of the sodium
channel, you'll see it is drawn in three parts. Our ideal-
ized channel has a hinged cap which can cover the part of
the gate that opens into the cell. We call this the inactiva-
tion gate. It also has a smaller flap inside the gate which
can close off the throat of the channel. This is called the
activation gate. These two pieces can be in one of three
positions: resting (activation gate is closed and the inacti-
vation gate is open); open (activation gate is open and the
inactivation gate is open); and closed (activation gate is
closed or closed and the inactivation gate is closed). Since
this is a voltage activated gate, the transition from resting
to open depends on the voltage across the cell membrane.
We typically use the following terminology:

e When the voltage across the membrane is above the
resting membrane voltage, we say the cell is
depolarized.

depolarization
40 g ms
v cm?
{mv) 30
45
20
37.5
10
([ TSR SR JI PO 30
5 6
t ms
-10
-20 225
-30
15.0
40
-50
75
-60
270 0
80 hyperpolarization
Timem S
Figure 3 A typical action potential.
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® When the voltage across the membrane is below the
resting membrane voltage, we say the cell is
hyperpolarized.

These gates transition from resting to open when the
membrane depolarizes due to an incoming voltage pulse.
In detail, the probability that the gate opens increases
upon membrane depolarization. However, the probabil-
ity that the gate transitions from open to closed is NOT
voltage dependent. Hence, no matter what the membrane
voltage, once a gate opens, there is a fixed probability it
will close again.

Hence, an action potential can be described as follows:
when the cell membrane is sufficiently depolarized, there
is an explosive increase in the opening of the sodium gates
which causes a huge influx on sodium ions which pro-
duces a short lived rapid increase in the voltage across the
membrane followed by a rapid return to the rest voltage
with a typical overshoot phase which temporarily keeps
the cell membrane hyperpolarized.

Next, let’s look at how these depolarizing pulses come
about.

The cable model

We begin with a simple model of a biological cell. We can
think of a cell as having an input line (this models the
dendritic tree), a cell body (this models the soma) and an
output line (this models the axon). We could model all
these elements with cables — thin ones for the dendrite
and axon and a fat one for the soma. To make our model
useful, we need to understand how current injected into
the dendritic cable propagates a change in the membrane
voltage to the soma and then out across the axon. In a
uniform isolated cell, the potential difference across the
membrane depends on where you are on the cell surface.
Now we wish to find a way to model V" as a function of
the distance downstream from site at which a current is
injected into the cable and also in terms of the the time
elapsed since current injection. This model will be called
the Core Conductor Model.

The core conductor model assumptions

Let’s start by imagining our cable as a long cylinder with
another cylinder inside it. The inner cylinder has a mem-
brane wall of some thickness small compared to the radius
of the inner cylinder. The outer cylinder simply has a
skin of negligible thickness. In this radial cross section,
let’s label the important currents and voltages using the
following conventions:

e tistime usually measured in milli-seconds or mS.

® zis position usually measured in cm.

® K.(z,t) is the current per unit length across the outer
cylinder due to external sources applied in a
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cylindrically symmetric fashion. This is usually
amp

measured in 7 =.

® K (z t) is the membrane current per unit length
from the inner to outer cylinder through the
membrane. This is also measure in %.

® Vi(z, t) is the potential in the inner conductor
measured in milli-volts or mV.

e V,(zt) is the membrane potential measured in
milli-volts or mV.

e V,(z,¢) is the potential in the outer conductor

measured in milli-volts or mV.

A longitudinal slice allows us to see the two main cur-
rents of interest, I; and I, as shown in Figure 4, where

® [,(z,¢) is the total longitudinal current flowing in the
+z direction in the outer conductor measured in
amps.

e [i(z,¢t) is the total longitudinal current flowing in the
+z direction in the inner conductor measured in
amps.

The Core Conductor Model is built on the following
assumptions:

1. The cell membrane is a cylindrical boundary
separating two conductors of current called the
intracellular and extracellular solutions. We assume
these solutions are homogeneous, isotropic and obey
Ohm’s Law.

2. All electrical variables have cylindrical symmetry.

3. A circuit theory description of currents and voltages
is adequate for our model.

4. Inner and outer currents are axial or longitudinal
only. Membrane currents are radial only.

5. At any given position longitudinally (i.e. along the
cylinder) the inner and outer conductors are
equipotential. Hence, potential in the inner and outer
conductors is constant radially. The only radial
potential variation occurs in the membrane.

A
o —p outer core A Ke
i — inner core Km
outer core ¥ Km
v Ko

Figure 4 Longitudinal currents.
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Finally, we assume the following geometric parameters:

® 7y is the resistance per unit length in the outer
conductor measured in ":’—m’"

® r;is the resistance per unit length in the inner
conductor measured in 22,

cm

® g is the radius of the inner cylinder measured in cm.

It is also convenient to define the current per unit area
variable J,;: (2, t) is the membrane current density per

. . am,
unit area measured in ﬁ

Building the core conductor model

Now let’s look at a slice of the model between positions z
and z + Az. In Figure 5, we see an abstraction of this. The
vertical lines represent the circular cross sections through
the cable at the positions z and z+ Az. We cut through the
outer shell first giving two horizontal lines labeled outer
membrane at the bottom of the figure. Then as we move
upward, we encounter the outer conductor. We then move
through the inner cable which has a bottom membrane, an
inner conductor and a top membrane. Finally, we enter the
outer conductor again and exit through the outer mem-
brane. At each position z, there are values of I}, I, V;, V,,
K, and V,, that are shown. Between z and z + Az, we
thus have a cylinder of inner and outer cable of length Az.
From the Az slice in Figure 5, we can abstract an electri-
cal network model and using the standard Kirchoff laws of
voltage and current balance at the relevant nodes, we find
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Ii(z*t) — Ii(z,t) — K, (20),
Az
=Ky, (z,t) — Ke(z, t)
Vi(z",t) — Vi(z, t) Vo(2*, 1) — Vo(z,t)
Az Az

Az

- —ViIi(Z*, t):

—1oly(Z¥2, 1)

where to save space we have let z* denote z + Az. Now the
equations above apply for any choice of Az. Physically, we
expect the voltages and currents we see here to be smooth
differentiable functions of z and ¢. Hence, we expect that
if we let Az go to zero, we will obtain the Core equations:
we have V,, = V; — Vpand

al; dl,
%z —Kin(z, 1), PPl Kin(z,t) — Ke(z, 1) (8)
aV; aV,
5y — iz, oy = Tolo(@D) )
. T W _ Vi Ve
Note Equation 9 implies that 2 = %7 52 Then,
again from Equation 9, we have % = —ril; + rol, Thus,
using Equation 8, we obtain
3%V, oI; I
822m = —ria—; + roa—; =1iKy + 1Ky, — roK,

Thus, the core equations imply that the membrane voltage
satisfies the Core Conductor Equation

32V,

2 = + 1)Ky —

oK, (10

Outer Membrane

I,‘(Z,t) V,'(Z,t)

Li(z+ Az, t) Vi(z + Az, t)

Outer Conductor

Inmer Membrane

Inner Conductor

I("l(zi t) ‘/"l(z*t)

Kz + Az, tVon(z + Az, t) Inner Membrane

Iy(z,t) Vo(z,t)

Io(z + Az, t)Vo(z + Az, t) Outer Conductor

Quter Membrane

Figure 5 The two slice model.

z+ Az

A Az slice of the cable model.
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The transient cable equations

Normally, we find it useful to model stuff that is happen-
ing in terms of how far things deviate or move away from
what are called nominal values. We can use this idea to
derive a new form of the Core Conductor Equation which
we will call the Transient Cable Equation. Let’s denote the
rest values of voltage and current in our model by adding
a superscript 0 to all of the relevant variables: i.e. V2, is
the rest value of the membrane potential, K9, is the rest
value of the membrane current per length density and so
forth. It is then traditional to define the transient variables
as perturbations from these rest values using the same
variables but with lower case letters:

® v, = Vyulz,t) — V,?, is the deviation of the
membrane potential from rest.

o i=1I(z,t) — IlQ is the deviation of the current in the
inner fluid from rest.

o i, =1,(z1) — 12 is the deviation of the current in the
outer fluid from rest.

o v, =Viz,t) — Vl-0 is the deviation of the voltage in
the inner fluid from rest.

e v, =V,(zt) — V(? is the deviation of the voltage in
the outer fluid from rest.

® k= Kiu(z,t) — K9 is the deviation of the
membrane current density from rest.

Then, the core conductor equation in terms of transient
variables the Transient Cable Equation or just Cable
Equation

3%y av,
o — (T ro)em—— — (i + ) gmVim = —Toke (11)
0z ot
The Cable Equation 11 can be further rewritten in terms

of two new constants, the space constant of the cable, X,
and the time constant, 7,,. Note, we can rewrite 11 as

1 9%v,,
(ri + 79)gm 022 gm Ot

Cm OV o

=——k
(ri + 10)gm ¢

Define the new constants

1
A= |———— and 1, = om
(ri + 10)&m 8m

Then m = 1, A2 and the Cable Equation 11 can be
written in a new form as

2
f 38:2m — Ty %L;" — V= —r,,)»f ke
The new constants t,, and A, are very important to under-
standing how the solutions to this equation will behave.
We call t,,, the time constant and A, the space constant
of our cable. To understand the Time Constant, con-

sider the ratio ;—’” Note the ratio has units of seconds

(12)

and thus, we can interpret this constant as the time con-
stant of the cable, 7,,. Note that 7,, is a constant whose
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value is independent of the size of the cell; hence it is a
membrane property. We can show the time constant can
thus be expressed as g—:”n also. Next consider the Space
Constant. Look at the dimensional analysis of the term
m which has units of cm?. This is why the square
root of the ratio functions as a length parameter. We can
look at this more closely. Consider again our approximate
model where we divide the cable up into pieces of length

Az. If we do some standard biophysical analysis, we can

_a__
20iGm

stants independent of cell geometry. So we see that the
space constant is proportional to the square root of the
fiber radius. Note also that the space constant decreases
as the fiber radius shrinks.

show A, = . Now p; and G,, are membrane con-

Finite cables

We are actually interested in a model of information pro-
cessing that includes a finite length dendrite, a cell body
and an axon. Consider a family of problems of the form
(13)

52 d%v,

i —ro A2k (z — 20), 0 <z <L, i(0)
Y4

— V=

=0, ii(L) =G vin(L)
(13)

where ¥, is the conductance to the end cap at position L
and the family {k¢} of impulses are each zero off [zy —
C, zp + C], symmetric around zp and the area under the
curve is 1 for all C. So the pulse family always delivers a
constant 1 amp of current and we control the magnitude
of the delivered current by the multiplier Jy. We assume
for now that the site of current injection is zo which is in
(0,L). As C goes to 0 in the solutions of this model, we
obtain the limiting solution

roicdy _ ==zl
e T e
2

which is the idealized impulse solution to the infinite cable
model.

Vim(z) = ,0<z<1L

The ball and stick model

We now extend our simple dendritic cable model to what
is called the ball and stick neuron model. This consists of
an isopotential sphere to model the cell body or soma cou-
pled to a single dendritic fiber input line. We model the
soma as a simple parallel resistance/capacitance network
and the dendrite as a finite length cable as previously dis-
cussed (see Figure 6). In Figure 6, you see the terms I,
the input current at the soma/dendrite junction starting at
7 = 0;Ip, the portion of the input current that enters the
dendrite (effectively determined by the input conductance
to the finite cable, Gp); Is, the portion of the input current
that enters the soma (effectively determined by the soma
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o D Dendrite
1 GD
0 L
Soma
Figure 6 The ball and stick model.
conductance Gs); and Cg, the soma membrane capaci- where x = mt}#. This is not a traditional Fourier series

tance. We assume that the electrical properties of the
soma and dendrite membrane are the same; this implies
that the fundamental time and space constants of the
soma and dendrite are given by the same constant (we
will use our standard notation 737 and A¢ as usual). For
convenience, we now normalized the variables using the
transformations

t z £
T=—, A=—, L=—

, = Uy = Vin(ACh, TMT).
™ AC AC

It is then possible to show that with a reasonable zero-rate
left end cap condition the appropriate boundary condition
at 1 = 0 is given by

MV . MV

o —(0,7) =tanh(L) | ¥,,,(0,7) + —(O0,7) |, (14)

aA at
where we introduce the fundamental ratio p = %’;, the
ratio of the dendritic conductance to soma conductance
(Rall 1977). The full system to solve is therefore:

%, . Y
WZVW:-F?,OSKEL,‘EZO- (15)
30’”@ ) =0 aa’”(0 ) = tanh(L) | ¥ (0, 7)
— (L, 7) =0, —(0, 7)) = tan v , T
an P on "

+ 8ﬂ(o, T):| . (16)
ot

Applying the technique of separation of variables,

V(A7) = u(A)w(r), we find there are is infinite family

of solutions ¥, (A, 7) = A, cos(a,A) e~ (1497 where the

values o, satisfy the transcendental equation

tan(al) = —« tanll;(L) = —«k(al),

(17)

solution but we can show the general solution has the
form

oo
DTy = Age™™ + > Ay cos(an(L — A)e” 1T,
n=1
To solve this model, for an applied continuous voltage
pulse V applied to the cable, we expand V as

V) =Vo + Y Vu cos(an(L — 1))

n=1

and match coefficients from the expansion of 7, (1, 0). We
can show any voltage pulse of interest can be written this
way (Peterson J, BioInformation Processing: A Primer on
Computational Cognitive Science in the Springer Cogni-
tive Science and Technology Series, in press). Thus, an
approximate solution is given by

Q
P T) 2 Age T+ D Ay cos(an(L — 1) e~
n=1

(18)

The calculation of the first Q coefficients is then handled
as a linear algebra problem.

We can also solve the full time and space cable equation
using a different suite of mathematical tools. We convert
the cable equation

a%v v,
3 822m =Vt T 87:1
where k. is current pulse per unit length applied at one
point into a diffusion equation with a change of variables.
First, we introduce a dimensionless scaling to make it eas-
z t

ier via the change of variables: y = & ands = .

— 71 )»% ke,
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With these changes, space will be measured in units of
space constants and time in units of time constants. We
then define the a new voltage variable w by w(s,y) =

Vi (Tmt, Aez) giving us the scaled cable equation %273’ =
w + %—VS" — 1 Az ke(Tims, Lcy). Then make the additional

change of variables ®(s,y) = w(s,y) €’ and obtain the new
model

PP 9P

= — 19
0y? ds (19)

— rokf T ke (TS, Acy) €°.
We go back to thinking of the cable as a half infinite one to
simplify the ideas and apply both the Laplace and Fourier
transform to this model to solve in the transformed vari-
ables. We then invert to find a time dependent solution to
this cable model

1
D(s,y) =rohdy ——=e€ &

VAams

2
Note, if we think of the diffusion constant as Dy = i‘—;’, we

can rewrite @ (s, y) as follows:

22

e_ 4Dyt

(s, 9) = ror’ly

1
4m Dot

Note the term Py(x, t) = JZL;TM

ability density function for a random walk with space
constant )\c/«/i and time constant t,,. Thus, ®(s,y) =
(rorc)lo (AcPo(x,2)). The term A Py(x, t) is the probability
we are in an interval of width A./2 around x and so is a
scalar without units. We then find the full solution w

2
X
e *Pot is the usual prob-

1 2
w(s,y) = ®(s,9) e =rohdo —=e Te

VAaTs

We write this in the unscaled form at the pulse center
(%0, 20) as

1 (=20)/20)*

e Xa—tg)/om o= (t=10)/Tm)
VA ((t —to)/Tm)

Vim(t,2) = roAcdo
(20)

Note the differences between the solution we find by using
separation of variables techniques where we assume the
time and spatial parts of the solution are separated which
forces us to use an infinite series approach. This also intro-
duces numerical artifacts and so forth. The solution using
transform tools shows a very different time and space
dependence in the solution which means the decay of the
response to the voltage impulse applied to the cable is
actually different than a standard exponential decay. Still,
a nice guiding principle is that the response drops roughly
e~! in magnitude every time and space constant we move
away from the injection site. Also, please note that we
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make a large number of simplifying assumptions in order
to arrive at these results.

The basic Hodgkin - Huxley model

We now discuss the Hodgkin - Huxley model for the gen-
eration of the action potential of an excitable nerve cell
using the standard Ball and Stick model. This augmented
cable equation can also be solved using the transform
techniques but we will not do so here. As previously men-
tioned, there are many variables are needed to describe
what is happening inside and outside the cellular mem-
brane, and to some extent, inside the membrane for a
standard cable model. In the standard core conductor
model, the membrane is not modeled at all, but we now
need to be more careful. A realistic description of how the
membrane activity contributes to the membrane voltage
must use models of ion flow which are controlled by gates
in the membrane. A simple model of this sort is based
on work that Hodgkin and Huxley ((Hodgkin and Huxley
1952), (Hodgkin 1952), (Hodgkin 1954)) performed in the
1950’s. We start by expanding the membrane model to
handle potassium, sodium and an all purpose current,
called leakage current, using a modification of our origi-
nal simple electrical circuit model of the membrane. We
will think of a gate in the membrane as having an intrin-
sic resistance and the cell membrane itself as having an
intrinsic capacitance as shown in Figure 7. This is a picture
of an idealized cell with a small portion of the mem-
brane blown up into an idealized circuit: we see a small
piece of the lipid membrane with an inserted gate. Thus,
we expand the single branch of our old circuit model
to multiple branches — one for each ion flow we wish to
model. The ionic current consists of the portions due to
potassium, Kk, sodium, Ky, and leakage K. The leakage
current is due to all other sources of ion flow across the
membrane which are not being explicitly modeled. This
would include ion pumps; gates for other ions such as Cal-
cium, Chlorine; neurotransmitter activated gates and so
forth. We will assume that the leakage current is chosen
so that there is no excitable neural activity at equilibrium.
We know that conductance is reciprocal resistance, so our
model will consist to a two branch circuit: one branch is
contains a capacitor and the other, the conductance ele-
ment. We will let ¢, denote the membrane capacitance

/b

Figure 7 The membrane and gate circuit model.

capacitance

resistance
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. . . fahrad .
density per unit length (measured in = =). Hence, in

our membrane box which is Az wide, we see the value
of capacitance should be ¢, Az. Similarly, we let g, be
the conductance per unit length (measured in m)
for the membrane. The amount of conductance for the
box element is thus g, Az. In Figure 8, we illustrate our
new membrane model. Since this is a resistance - capac-
itance parallel circuit, it is traditional to call this an RC
membrane model. In Figure 8, the current going into the
element is K, (z,t) Az and we draw the rest voltage for
the membrane as a battery of value V9. We know that
the membrane current, K, satisfies Equation 21:

oV,
Ki(z,t) = gn Vin(z, ) + cp——

at @D

In terms of membrane current densities, all of the above
details come from modeling the simple equation K, =
K.+ Kj,, where K, is the membrane current density, K is
the current through the capacitative side of the circuit and
Koy, is the current that flows through the side of the circuit
that is modeled by the conductance term, g,,. We see that
in this model K, = cm% and Kjp,, = gy V- However,
we can come up with a more realistic model of how the
membrane activity contributes to the membrane voltage
by adding models of ion flow controlled by gates in the
membrane. Our models are based on work that Hodgkin
and Huxley performed in the 1950’s.

The standard Hodgkin - Huxley model of an excitatory
neuron consists of the equation for the total membrane
current, Ky, obtained from Ohm’s law: K, = cm% +
Ky + Ky, + Ki where we have expanded the Kj,,, term to
include the contributions from the sodium and potassium
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currents and the leakage current. The new equation for
the membrane voltage is thus

L 3V Vim + Kx + Kng + K,
2t 9Vm_OVm
v+ r, 922 "ot Ko ANa T AL
To
- % K 22
o K (22)

In Figure 1, we show an idealized cell with a small por-
tion of the membrane blown up into an idealized circuit.
We see a small piece of the lipid membrane with an
inserted gate. We think of the gate as having some intrinsic
resistance and capacitance. Now for our simple Hodgkin -
Huxley model here, we want to model a sodium and potas-
sium gate as well as the cell capacitance. So we will have a
resistance for both the sodium and potassium. In addition,
we will have additional ion currents modeled as a leakage
current with its own resistance. We also know that each
ion has its own equilibrium potential which is determined
by applying the Nernst equation. The driving electromo-
tive force or driving emf is the difference between the
ion equilibrium potential and the voltage across the mem-
brane itself. Hence, if E, is the equilibrium potential due to
ion ¢ and V}, is the membrane potential, the driving force
is V. — Vy,. Looking back again, Figure 1, we see an elec-
tric schematic that summarizes what we have just said. We
model the membrane as a parallel circuit with a branch for
the sodium and potassium ion, a branch for the leakage
current and a branch for the membrane capacitance. As
usual, from Ohm’s law, we know for each ion ¢, I, = R% Ve
or I, = G, V. where G, is the reciprocal resistance or con-
ductance of ion c¢. Hence, we can model all of our ionic
currents using a conductance equation of the form above.
Of course, the potassium and sodium conductances are
nonlinear functions of the membrane voltage V' and time

Incoming Kylz,t) dz
Current

Cpdz —_—

Vm(zit)

% 1/ (gpdz)
___L

%

Figure 8 The RC membrane model.

Outgoing Current
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t. This reflects the fact that the amount of current that
flows through the membrane for these ions is dependent
on the voltage differential across the membrane which in
turn is also time dependent. The general functional form
for an ion c is thus I, = G (V,t)(V(¢t) — E.(t)) where as
we mentioned previously, the driving force, V' — E, is the
difference between the voltage across the membrane and
the equilibrium value for the ion in question, E,. Note, the
ion battery voltage E, itself might also change in time (for
example, extracellular potassium concentration changes
over time). Hence, the driving force is time dependent.
The conductance is modeled as the product of an acti-
vation, m, and an inactivation, %, term and it is assumed
to have the form G.(V,t) = Gom?(V,t) hi1(V,t) where
appropriate powers of p and ¢q are found to match known
data for a given ion conductance. Finally, we model the
leakage current, Ir, as I = g1 (V(t) — Er) where the
leakage battery voltage, Er, and the conductance g; are
constants that are data driven. Hence, in terms of current
densities, letting gx, gn; and g7 respectively denote the ion
conductances per length, our full model would be

1 3%V, Vi K N
= AV ) N
ri+r, 0z2 Cm ot +gK< m +gNa( W’)
T
vy % K
+gL( m) it e

where we have written AV,Ifl = V,u — Eg and so forth.
Under certain experimental conditions, we can force the

membrane voltage to be independent of the spacial vari-
3

2
able z. In this case, we find BZV{” = 0 which allows us to

write

AV + Kx + Kna + K i
e &Vm _
m dt K Na L 7 T o

K, =0 (23)

Since, ¢, is capacitance per unit length, the above
equation can also be interpreted in terms of capacitance,
Cu, and currents, I, Ing, I; and an external type current
L. This leads to

oTRALING SR o =0 (29
mdt K Na L [ e —

Finally, if we label as external current, I, the term I =
n:—"ro I, the equation we need to solve under the voltage
clamped protocol becomes

adV

1
=—(Ix — Ing — I + Ip)
Cm

The Hodgkin-Huxley sodium and potassium model
Hodgkin and Huxley modeled the sodium and potassium
gates as

ava(V) = g5 fna® (V) Hia (V)
(V) = g¥ i (V)
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where .#n4 and .#x are called activation variables and
J4 is an inactivation variable which all satisfy the first
order @ kinetics that tell us

T lna %]([A(t) = (%NA)OO - %NA
Totun o (®) = (Ha)oe — Hiia
T ik '%]/((t) = ('%K)OO - '%K

where for each ion ¢

1 oA,
Ty, =———— and (Moo= —""T-——
au, + Pa, T au + B
Further, the coefficient functions, « and §
for each variable required data fits, such as

&y, = —0.10 %, as functions of voltage.

We will not list the rest here as we do not need that
level of detail. Of course these data fits were obtained
at a certain temperature and assumed values for all the
other constants needed and so they need to be altered if
the temperature and ionic concentrations change. Our
model of the membrane dynamics here thus consists of
the following differential equations:

Ttina 62//7;\1,4 = (MNA) oo — MNa,  AMna(0)
= (AMNa)o(Vo,0)
T ta d{j% = (Ma)oo — Hha, Hna(0)
= (Ha)oo(V0,0)
T dT//tZK = (MK)oo — Mk, MK(0)

= (AMK)oo(Vo,0)

av Iy — Ix — Ing — 11
_— = ) VO =V
I Car (0) 0

We note that at equilibrium there is no current
across the membrane. Hence, the sodium and potas-
sium currents are zero and the activation and inacti-
vation variables should achieve their steady state val-
ues which would be m, iy and ne computed at the
equilibrium membrane potential which is here denoted
by V().

At this point, we see a general model of how to gener-
ate an action potential. We do not model the transmission
of the action potential to its target neurons; suffice it to
say, there are molecular mechanisms that send the pulse
to its targets without change. At the interface to the tar-
get neuron called the synapse, the incoming voltage pulse
generates a Ca™? current which in turn generates discrete
packets of neurotransmitter which are released for pro-
cessing by the target neurons dendritic subsystem. Note
the signal transduction pathway here: the axonal voltage
pulse is converted into a discrete release of molecules
which bind with the dendritic arbor and thereby shape the
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next axonal pulse in very nonlinear ways. We are also not
interested here in how information might be encoded in
collections of axonal spikes. Our interest at the moment is
in the low level bones. In general, we separate the effects
of these triggers into two classes: first messengers which
are essentially voltage activated gates and second mes-
sengers which enter through the membrane and initiate
a protein transcription event which can rebuild the actual
hardware of the cell. An abstract analysis of such a trigger
event is presented in (Peterson 2014a) in order to build
trigger approximations. Here, we will primarily be inter-
ested in second messengers which are neurotransmitters
even though the triggers can be more general. There is
a vast literature on signaling in a biological neural sys-
tem and we will point you to just a few relevant sources.
We prefer papers and texts that help us understand an
overarching theory of the signaling process. Most of these
sources are actually fairly old but are full of the technical
detail needed to understand the processes being studied.
In particular, the use of mathematical points of view is
not shied away from and newer references tend to down-
play that point of view. Two basic and very useful texts on
signaling are (Gerhart and Kirschner 1997) and (Wilkins
2002) which look at these ideas very theoretically. Two
other very good resources for this material are (Hille 1992)
and (Bray 1998). Bray’s paper is very important and is very
useful when you try to understand signaling principles;
again, the material is not really dated and it is worth a
strong push towards assimilating its ideas. Remember that
understanding signaling principles allows us to see how to
build reasonable approximations. The paper (Sneppen et
al. 2010) is really about protein networks but it has lots of
good advice about how to approximate complicated bio-
physics and then glue together the models into systems. A
good overview of how neurons work together to generate
high level behavior (which we do not really understand)
can be found in (Roberts et al. 2010) which will help
you see Black’s points discussed in the next section again
phrased in terms of what we currently understand. There
is a lot of combinatorial complexity here too and model-
ing that is hard. Even 4 things taken 2 at a time at each
node leads to incredible explosions of computation. A
really interesting article on dealing with that is found in
(Borisov et al. 2006) which is well worth a read. Another
look at the notion of discrete synaptic states and result-
ing computational complexity is in (Montgomery and
Madison 2004) and (Harris-Warrick and Johnson 2010).
With all this said, for simplicity, let’s look now at the class
of catecholamine neurotransmitters in the nervous sys-
tem. We will focus on only a few types: DA, dopamine;
NE, norepinephrine; and E, epinephrine and lump them
together into the category called CAs because they all
share a common core biochemical structure, the catechol

group.
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Modeling issues
Consider the following perceptive quotation (Black 1991):

“More generally, regulation of transmit-
ter synthesis shares important common-
alities in neurons that differ functionally,
anatomically, and embryologically. This
point is worthy of emphasis. Simply stated,
the common biochemical and genomic
organization of these diverse populations
determines how environmental, epigenetic
information, through altered impulse activ-
ity, is translated into neural information...
cellular biochemical organization, not
behavioral modality, is a key determi-
nant of how external stimuli are con-
verted into neural language. In this
domain, modes of information storage
are biochemically specific, not modality
specific, indicating that synaptic systems
subserving entirely different behavioral
and cognitive functions may share com-
mon modes of information processing
(boldface our choice)”

Hence, in our search for a core object useful in con-
structing architectures capable of subserving learning and
memory function among other things, the evidence above
suggests we focus on various second messengers such as
prototypical neurotransmitters. Figure 3 indicates to us
that the general structure of a typical action potential con-
tains some important points we can organize into a low
dimensional feature vector

£ =[(to, Vo), (t1, V1), (82, V1), (83, V3), (g, ta, Va)]'

where (o, Vo) is the start point of the pulse, (t1, V1) is
where the maximum occurs, (£, V5) is when the volt-
age returns to reference voltage, (3, V3) is the location
of the minimum and the model of the tail of the action
potential during the bulk of hyperpolarization phase has
the form V,,(¢) = V3 + (V4 — V3) tanh(g(z — t3)).
Hence, from a certain point of view, these 11 parameters
capture much of the important information about this
pulse. Second messengers are triggers which enter the
dendrite, soma and/or axon and initiate the transcription
of one or multiple proteins. Since these proteins include
those used to build sodium and potassium gates, we see
a second messenger trigger can influence directly gA%"x
and gljg“x and thereby reshape the pulse. In general, a
neurotransmitter can initiate a change in the shape of
the action potential which we can for simplicity corre-
sponds to an alteration of the 11 parameters that shape
the feature vector. Hence, a trigger T generates 6§ =
[ (St(), 8V0)1 (5t17 5VI)! (5t2r 8‘/2)’ (6t31 6‘/3)7 (Sg’ 6t41 6‘/4)]/
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Some neurotransmitters can generate an update signal
which alters only one parameter and leaves the others
alone. Such triggers are quite useful and are used in
synthetic biology as orthogonal primers as they allow us
to modify one thing at a time, so to speak (Ansari and
Mapp 2002), (Esvelt et al. 2013) and (Rusk 2014), but
that is another story. Hence, a model of dendritic—axonal
interaction should include a mechanism for dendrite and
axon object interaction which in general requires an agent
which accepts dendritic and axonal arguments. Further,
both the dendrite and the axon should have some depen-
dency on neurotransmitters inputs whose construction
and subsequent reabsorption for further reuse should
follow modulatory pathways that mimic in principle the
realities of CA transmitter synthesis.

How should we model CA release, CA termination,
CA identification via CA specific receptors and synaptic
plasticity? CA is released through a large variety of mech-
anisms, each of which is modulated in varying degrees by
many other agents. Most importantly, this release needs
Ca*? which is mediated by second messenger action
such hormones and intraneural cAMP in what can be a
rather global way. Hence, release of CA itself can modu-
late subsequent CA release. Further, there are more global
mechanisms which interact with the CA release and pro-
duction cycle via non-transmitter mechanisms. Note
(Black 1991)

“.angiotensin II receptors on the
[presynaptic] membrane also modulate
norepinephrine release. Angiotensin is a
potent vasoconstrictor, derived from ...
an enzyme secreted by the kidney...the
principle is startling: the kidney can
communicate with sympathetic neurons
through nonsynaptic mechanisms (bold-
face choice ours)...Circulating hormone
regulates transmitter release at the synapse.
Synaptic communication, then, may be
modulated by nonsynaptic mechanisms,
and distant structures may talk to receptive
neurons. Consequently aspects of com-
munication with the nervous system
are freed from hard-wiring constraints
(boldface choice author’s).”

Clearly, dendritic—axonal software interaction should be
mediated via pathways of both local scope objects) and
global scope, using additional objects which could be
modeled after hormones.

We also know CA termination is critical to CA func-
tion. CA substance is deactivated by reabsorption into the
presynaptic structure itself. For example, dopamine levels
are controlled by three separate mechanisms.
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e Dopamine packets are released into the synaptic cleft
and bind to receptors on the dendrite. So, the
number of receptors per unit area of dendritic
membrane provides a control of dopamine
concentration in the cleft.

e Dopamine is broken down by enzymes in the cleft all
the time which also control dopamine concentration.

e Dopamine is pumped back into the presynaptic bulb
for reuse providing another mechanism.

Hence, the interaction between the presynaptic and post-
synaptic neurons is always changing. This mutability is
called their synaptic plasticity. It is mediated by both local
and global pathways. Indeed, it is clear an attempt to
develop a large scale architecture which possesses suffi-
cient plasticity will be a daunting task. We must remember
(Black 1991)

“Briefly, certain types of molecules in the
nervous system occupy a unique functional
niche. These molecules subserve multiple
functions simultaneously. ... [They] incor-
porate environmental information into the
cell and nervous system. Consequently
these molecules simultaneously function
as biochemical intermediates and as sym-
bols representing specific environmental
conditions.... The principle of multiple
function implies that there is no clear dis-
tinction among the processes of cellular
metabolism, intercellular communication,
and symbolic function in the nervous sys-
tem. Representation of information and
communication are part of the functioning
fabric of the nervous system. ... the brain
can no longer be regarded as the hard-
ware underlying the separate software of
the mind. Scrutiny will indicate that these
categories are ill framed and that hard-
ware and software are one in the nervous
system.”

From this quote of Black, you can see the enormous chal-
lenge we face. We can infer from the above that to be able
to have the properties of plasticity and response to envi-
ronmental change, certain software objects in our model
must be allowed to subserve the dual roles of communica-
tion and architecture modification. Black refers to this as
the “principle of polyfunction” (Black 1991).

“Shorn of all detail, the software—hardware
dichotomy is artificial. ... software and
hardware are one and the same in the ner-
vous system. To the degree that these terms
have any meaning in the nervous system,



Peterson Computational Cognitive Science (2015) 1:1

How are we to design a software architecture system
which essentially is self-~modifying? Next, note (Black

1991)

software changes the hardware upon which
the software is based. For example, expe-
rience changes the structure of neurons,
changes the signals that neurons send,
changes the circuitry of the brain, and
thereby changes output and any analogue of
neural software.”

“Increasing evidence indicates that ongo-
ing function, that is, communication itself,
alters the structure of the nervous system.
In turn altered structure changes ongoing
function, which continues to alter struc-
ture. The essential unity of structure and
function is a major theme... ... In this sys-
tem, then, signal communication, growth,
altered architecture, altered neural func-
tion, and memory are causally interrelated;
there is no easy divide between hardware
and software. The rules of function are the
rules of architecture, and function governs
architecture, which governs function.... The
essential unity of structure and function,
of hardware and software, is not restricted
to mammals; it is evident in invertebrate
nervous systems as well.”
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of the real world. The potential units, or
elements of interest, thereby function as
symbols representing external or inter-
nal reality. The symbols, then, are actual
physical structures that constitute neu-
ral language representing the real world
(boldface our choice). Second, the symbols
must govern the function of the nervous
system such that the representation itself
constitutes a change in neural state. Con-
sequently symbols do not serve as indif-
ferent repositories of information but
govern ongoing function of the nervous
system (boldface our choice). Symbols in
the nervous system simultaneously dictate
the rules of operation of the system. ... The
syntax of symbol operation is the syntax
of neural function (boldface our choice).”

Vertebrates use this sort of grammar building in many
situations. It is very interesting to compare these neu-
ral ideas to similar ideas in immunology (see (Shastri et
al. 2002), (Rot and von Andrian 2004) and (Edwards et
al. 2012)); compare the grammars implicitly encoded by
chemokine signals to what are encoded by neural signals.
Indeed inflammatory responses due to cytokine grammar
parsing are probably responsible for some psychopathol-
ogy (Capuron and Miller 2004). Information processing
also involves a combinatorial strategies (Black 1991):

“Two related strategies are employed by

If we think of architectures consisting of loosely cou-
pled computational modules, each module is a kind of
input—output mapping which we can call an object of
type IOMAP. Models with computational nodes linked by
edges can be called graph models. Early versions of these
software architectures for neural systems assert the infor-
mation content of the architecture is stored in the weight
values are attached to the links and these weight values
are altered due to environmental influence via some sort
of updating mechanism. Since it is now clear the architec-
ture itself must be self-modifying, consider the dual roles
played by neural processing elements (Black 1991):

“Any set of elements is relevant only inso-

the nervous system in the manipulation of
the transmitter molecular symbols. First,
individual neurons use multiple transmit-
ter signal types at any given time. Sec-
ond, each transmitter type may respond

independently of others to environmen-
tal stimuli.... The neuron appears to use a
combinatorial strategy, a simple and ele-
gant process used repeatedly in nature in
a variety of guises. A series of distinct ele-
ments, of relatively restricted number, are
used in a wide variety of combinations and
permutations.”

far as it processes information and simul-
taneously participates in ongoing neural
function; these dual roles require the neu-
ral context. What structural elements may
be usefully examined? ... First, neural ele-
ments of interest must change with envi-
ronment. That is, environmental stimuli
must, in some sense, regulate the func-
tion of these particular units such that the
units actually serve to represent conditions

In our mind, although there is an architecture that spec-
ifies connection information between processing nodes,
what really counts is how the computation is organized
into overlapping computational modules. It is dangerous
to think that these neural systems are organized hierarchi-
cally. In (Wagner 2014), there is a compelling discussion of
hierarchical schemes which is targeted towards problems
in homology, the study of how characteristics in different
species are similar and could even have evolved from a
common ancestor. Wagner says it best:
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“We have to emancipate our thinking from
the hierarchical concept of how bodies of
organisms are organized. In fact, hierarchy
never made sense if one thinks of the body
as an integrated system that contains dif-
ferentiated parts. Integration is primary,
differentiation is secondary and how the
body becomes parceled into modular
units does not follow a hierarchical logic
(boldface our choice)”

We face very similar conceptual issues in our development
of a model of a neural system. We believe the fundamental
computational entities of the neural system do organize in
time constrained and, perhaps, spatially constrained, col-
lections of nodes and that it is quite simplistic to try to
analyze this using modules and hierarchies. Wagner notes,
in discussing how cell type is determined

“there is increasing evidence that the gene
regulatory network state of a cell is gov-
erned not by one core network, but by a
mosaic of densely interconnected network
modules each of which, in isolation, might
look like a core network.”

He goes on further to note that some cell types can be
understood as different combinations of gene regulatory
modules which is reminiscent of the kind of combinatorial
machinations we see in the immune system to gener-
ate a response to an intruder ((Shastri et al. 2002) and
(Rot and von Andrian 2004)) and in the nervous sys-
tem ((Black 1991) and (Montgomery and Madison 2004)).
Each IOMAP module must therefore be capable of a
certain number of active states.

Assembling neurons into networks
The inputs into the dendritic tree of an excitable nerve
cell can be separated into first and second messenger
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classes. The first messenger group consists of Hodgkin-
Huxley voltage dependent ion gates and the second mes-
sengers includes molecules which bind to the dendrite
through some sort of interface and then trigger a series
of secondary events inside the cytoplasm of the cell body
which lead to protein transcription and the modification
of the cell's molecular machinery. We can connect a stan-
dard feedforward architecture of neurons as a chain as
shown in Figure 9. Note that in Figure 9, the interac-
tion between dendritic and axonal objects has not been
made explicit. The usual simplistic approximation to this
interaction transforms a summed collection of weighted
inputs via a saturating transfer function with bounded
output range. The dendritic and axonal interaction is
modeled by a scalar Wj; as described above. It mea-
sures the intensity of the interaction between the input
neuron i and the output neuron j as a simple scalar
weight.

Chained architecture details

Let’s look at a chain of computational nodes such as neu-
rons in more detail. If the architecture is feed forward we
would have the Chain Feed Forward Network (CFFN).
The chain consists of computational elements, generally
referred to as neurons. This is because a very simple model
of neural processing models the action potential spike
with a sigmoid function which transitions rapidly from
a binary 0 (no spike) to 1 (spike). This sigmoid is called
a transfer function and since it can not exceed 1 as 1
is a horizontal asymptote, it is called a saturating trans-
fer function also. This model is known as a lumped sum
model of post-synaptic potential; now that we know about
the ball - stick model of neural processing, we can see
the lumped sum model is indeed simplistic. Each neuron
thus processes a summed collection of weighted inputs
via a saturating transfer function with bounded output
range (i.e. [0, 1]). The neurons whose outputs connect to

A feedback and feedforward architecture draw as a chain
with two inputs and two outputs. Note the self feedback

interaction of W2 and the feedback strength of Wjy,.

Figure 9 A chained neural architecture with self feedback loops and general feedback.
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a given target or postsynaptic neuron are called presy-
naptic neurons. Each presynaptic neuron has an output
Y which is modified by the synaptic weight Wpyepost
connecting the presynaptic neuron to the postsynaptic
neuron. This gives a contribution Wpyeposs Y to the input
of the postsynaptic neuron. A typical transfer function

could be modeled as o(x,0,g) = .5 (1.0 + tanh (%))

where o is the offset which controls the location of the
maximum response of the sigmoid and ¢ (g) is a function
which shapes how fast the sigmoid rises from its min-
imum to its maximum value. The chained model then
consists of a string of N neurons, labeled from 0 to N — 1.
Some of these neurons can accept external input and
some have their outputs compared to external targets.
We let i/ = indices i where neuron i is an input and
)V = indices i where neuron i is an output. We will let »;
and #np denote the size of I/ and V respectively. Note in a
chain, it is also possible for an input neuron to be an out-
put neuron; hence U and V need not be disjoint sets. Each
neuron can be viewed as a postsynaptic neuron with a
set of presynaptic neurons feeding into it: thus, each neu-
ron i has associated with it a set of backward links which
will be denoted by B(i). Each node i also connects for-
ward to other nodes and the set of forward connections is
called F (7). The weight of the synaptic link connecting the
presynaptic neuron i to the postsynaptic neuron j is then
denoted by W;_,; although in general this should be an
edge processing function. For a feedforward architecture,
we would havej > i, however, as you can see in Figure 9,
this is not true in more general chain architectures. The
input of a typical postsynaptic neuron therefore requires
summing over the backward link set of the postsynaptic
neuron in the following way:

ypast:x+ Z

pre € B(post)

re
Wpre—> post Y?

where the term x is the external input term which is only
used if the post neuron is an input neuron. The chain thus
processes an arbitrary input vector # € R into an output
vector in 1”0 and this is a highly nonlinear calculation. In
Figure 9, we see a chain of six neurons. We see two neu-
rons that accept external input (neurons 0 and 1) and two
neurons having external taps (neurons 4 and 5). The set
of postsynaptic neurons for a given neuron i is denoted
by the symbols F (i); the letter F denotes the feedforward
links, of course. Note the self and feedback connection in
the set F(2) = {2,5}. Also each neuron can be viewed as
a postsynaptic neuron with a set of presynaptic neurons
feeding into it: thus, each neuron i has associated with it a
set of backward links which will be denoted by B(i) such
as B(5) = {0,2,3,4} . In general, the backward link sets
can be much richer in connections than this simple exam-
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ple indicates. This model thus uses the computational
scheme

YPost =g (7%,0,8) = o [x+ D Wyrewpost Y7

pre € B(post)

which can be rewritten a?% = § (x + 2 precBpost) ¥°®

dpost, p) where a indicates the value of a given axon, d,
the value of a given dendrite and S, the soma computa-
tional engine, which depends on a vector of parameters,
p. The term a”"® o dP*! denotes the interaction or pro-
cessing between the post neuron axon and the pre neuron
dendrite. Note that the e operation could correspond to
a simple multiplication of the pre—axon value 4 and the
post—dendrite value d.

Each of our directed graphs also has node and edge
functions associated with it and these functions are time
dependent as what they do depends on first and second
messenger triggers, the hardware structure of the output
neuron and so forth. We therefore could model neural
circuitry using a directed graph architecture consisting
of computational nodes N and edge functions E which
mediate the transfer of information between two nodes.
Hence, if N; and Nj are two computational nodes, then
E;_,j would be the corresponding edge function that han-
dles information transfer from node N; and node Nj. For
our purposes, we will assume here that the neural circuitry
architecture we describe is fixed, although dynamic archi-
tectures can be handled as sequence of directed graphs.
We then organize the directed graph using interactions
between neural modules (visual cortex, thalamus etc)
which are themselves subgraphs of the entire circuit. Once
we have chosen a graph to represent the neural circuitry,
note the addition of a new neural module is easily han-
dled by adding it and its connections to other modules as
a subgraph addition. Hence, at a given level of complexity,
if we have the graph G(N, E) that encodes the connectiv-
ity we wish to model, then the addition of a new module
or modules simply generates a new graph G'(N’, E’) for
which there are straightforward equations for explaining
how G’ relates to G which are easy to implement.

The update equations for a given node were given ear-
lier, but now let’s look at them deeper. For the node N,
let y; and Y; denote the input and output from the node,
respectively. Then the update strategy with the iteration
counter or time labeled at ¢ is given by

yit+ 1) =L+ Y Ei(t)Yj(t) and
jeB)
Yi(t + 1) = 0:(0) (i (1)).
where I; is a possible external input, B(i) is the list of

nodes which connect to the input side of node N; and
0;(?) is the function which processes the inputs to the
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node into outputs. This processing function is mutable
over time ¢ because second messenger systems are alter-
ing how information is processing each time tick. Hence,
our model consists of a graph G which captures the con-
nectivity or topology of the brain model on top of which
is laid the instructions for information processing via the
time dependent node and edge processing functions. A
simple look at edge processing shows the nodal output
which is perhaps an action potential which is transferred
without change to a synaptic connection where it initi-
ates a spike in Ca*? ions which results in neurotransmitter
release. A very simple version of this is to simply assign
the value of the edge processing function E;_,; to be the
weight W;; as is standard in a simple connectionist archi-
tecture. Of course, it is more complicated as our graphs
allow feedback easily by simply defining the appropriate
edge connections. Another approach is to handle feedback
terms using a lag ((Werbos 1987) and also see the chap-
ter on lagged chain feed forward architectures (LCFFN)
in (Peterson J, Biolnformation Processing: A Primer on
Computational Cognitive Science in the Springer Cogni-
tive Science and Technology Series, in press). The lagged
approach rewrites the feedback structure as a feedforward
structure from time ¢ to ¢ + 1. The lagged architectures
can model much more complicated things than simple
feedbacks also, but that is not needed here. Note that
this is of theoretical interest as it allows us to repackage
any graph model of a neural system with feedback into a
new version which is feedforward. Now, so far we have
only discussed evaluation of the graph architecture. Usu-
ally, there are inputs which must be mapped to specified
outputs (a classical training problem) or based on inputs,
the edge functions between nodes are used to develop the
input to outputs desired (this is a Hebbian approach). We
will not discuss this here except to say that the rewrit-
ing of the graph into an equivalent feedforward one is
useful for the development of computational strategies to
hot start a graph model to map given inputs to outputs.
The alteration of the parameters in the graph via Hebbian
approaches takes a long time and so we can jump to a
better parameter start using tools from essentially Ax =
b techniques, (Peterson 1991), although that is another
story too. One can also develop techniques to train a graph
and even use subgraphs to do the training and an attempt
at this can be found in (Peterson 2014b).

Conclusions

From our discussions, it should now be clear that mod-
eling information transmission in a neural system is
complicated and any attempt to do so requires many
approximations. The cable equation arises from many
compromises and from the explicit modeling of the cel-
lular processes using approximations based on circuit
theory. The Hodgkin-Huxley model also comes from
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many approximations and we have only focused on the
simplest model: one that contains only sodium and potas-
sium gates. Many more complicated models have been
built, of course, but this simple model gets across the gist
of it all. We have also focused on one dimensional approxi-
mations to biological information transfer and we can also
redo all of these approximations in a three dimensional
way but that does not add any real additional informa-
tion. Further, the dendritic arbor can be subdivided into
compartments thereby generating what are called com-
partment models and we do not discuss that level of detail
here. However, from the discussions from (Black 1991)(do
not be put off by the date of Black’s small book. He iden-
tifies many of the problems we still face and reading his
book gives one extraordinary perspective), it is very clear
that the circuit theory approach is not at all what is really
going on.

From one point of view, each neural system is a graph of
interacting computational nodes, which in a typical model
of neurobiological interest would be neurons, but need
not be. Systems from autonomous robotics and gene reg-
ulatory networks are of a similar type although the nodal
and edge processing are different from what we describe
here. See again the book level treatment of homology in
(Wagner 2014) and the chemokine grammar discussed
in (Rot and von Andrian 2004). In this issue, (Peterson
2014a) explores various ways to approximate the nodal
and edge processing functions in these graphs in such
a way that they could be efficiently implemented in a
functional language such as Erlang which does not have
shared memory. Much work has been devoted to trying
to understand the information processing principles of
various subgraphs in such a model. A general model of
brain function can be seen in (Friston 2005) and (Friston
2010) and some general thoughts on fundamental build-
ing blocks and motifs in a neural system are discussed in
(Pereira-Leal et al. 2006), (Lesne 2008) and (Somel et al.
2013). There are many more, but our favorites tend to be
those that focus on theoretical principles. For example,
there is a nice paper on motifs in (Huang et al. 2007) which
we have found very useful.

In addition, there is much to be learned by looking
at neural modules and systems that do not come from
human neurophysiology. The function of the cortex in
humans is a good example. Primary sensory signals are
parsed by neural circuitry and associated into neural sig-
nals that have a functional use. The mushroom body in
insects is a great example of an alternate way to perform
these calculations. Also, the size of the mushroom body
varies as the insect gets physiologically larger and one can
perform studies to see how the animals functions improve
with larger mushroom body size (i.e. more neurons and
more connections allocated for use in the body). There is
a wealth of information on this topic and reading various
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papers in this area shows us alternate ways to think of
information processing — different solutions to the pri-
mary problems. We think this is very useful in designing
ways to do autonomous robotics for example. There is
really no need to think our designs in that area must be
based on human neurophysiology. Some good references
here are (Farris and Sinakevitch 2003) (basic theoretical
background), (Sjoholm et al. 2005) (very good on mush-
room body discussions) and (Haehnel and Menzel 2010).
Also, birds have an analogue of prefrontal cortex which
is useful to think about: see (Herrold et al. 2011) and
(Wang et al. 2010). The point here is that trying to answer
high level questions about how a neural system leads to
behavior and some level of cognition (again useful for
autonomous robotics) can be helped by looking at other
models. The honeybee is a compact model of cognition
and studying it from that point of view is illuminating: see
(Menzel 2012).

To try to understand how neural modules hook together,
it is also very helpful to look at the principles of
brain development across multiple species. The papers
(Murakami et al. 2005) and (Baslow 2011) are good exam-
ples of this kind of work. Understanding these principles
also helps shape our view of how to build approximations
to neural processing machinery. For example, what is a
good minimal neural system which will exhibit some of
the cognitive behaviors we see in small animals? Do we
need models of working memory? Do we need emotional
subcircuits?

To close, we note the graph model which has individual
processing nodes and edge functions allows for each node
to be different. At the moment we do not even know how
many different types of neuron are in the cortex, thala-
mus and other structures. The graph models we mention
here can deal with many different neuronal nodes and
different edge processing approaches in principle. How-
ever, we will always have to do lots of approximation.
Consider a simple model of a purkinje neuron. It inte-
grates as many as 10,000 or more individual inputs into
its dendritic arbor and the individual dendritic fibers can
be extraordinarily long as they stretch laterally across the
cortical layers. In a standard cable model or compart-
ment cable model, we know there is strong attenuation on
the order of e~! in terms of the space and time constant
of the cable. Signals arrive thousands of space constants
away from the soma yet the purkinje node can process
these handily. Numerical modeling tools can not do this
as the attenuation amounts to multiplicative factors on
the order of e~ for large N which gives numerical val-
ues below machine zero. We must develop approximate
ways to do these calculations which is still a work in
progress.

It is now time to lay out some speculative thoughts on
all of this. In general, we could model a neural system or
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other collection of interacting computational nodes as a
directed graph G(N,E) where each node and edge is a
potentially different computational process. Hence, there
is a connection architecture G at any chosen stage of our
modeling which we can perhaps think of as fixed. That
is, for the moment, new edges are not being made and
so forth. Any additional updates we make to this model
alter it into a new graph. In fact, we can envision that
our modeling process consists of a sequence of graphs G,
where each succeeding graph G, is related to the pre-
vious one by a transition graph we could label as AG,,.
We could organize these graphs into a Cauchy sequence
of elements in an appropriate metric space and, in princi-
ple, we would have a limiting neural system model which
says something about the true neural system we wish to
model. Of course, each G, has only a finite number of
nodes and edges so the hypothetical limiting neural sys-
tem is quite abstract. Still, we find this level of abstraction
interesting as it allows us to ask questions we find it hard
to even frame at an individual G,, level. Now, this connec-
tion information is just part of the story as the real picture
is a graph G, and a collection of node and edge functions
from some class of computational models. One choice is
the standard sigmoid which has three degrees of freedom
(the input, the offset which allows us to tune the point of
maximum response to an input and the gain which con-
trols how rapidly the sigmoid switches from low to high
in its response) and another choice is the feature vector
model with 11 degrees of freedom. For that model, we
shape the 11 parameters using second messenger triggers
as discussed in (Peterson 2014a). There are many others,
of course. The graphs and computational function families
needed for the model are then merged into an appropri-
ate topological vector space or metric space and again
we think about the convergence of the graph sequence
in some sort of topology. So here are a few questions we
might want to ask:

® Once we fix the graph G and the node and edge
functions, what kind of cognitive systems can we
build? This is a nuts and bolts engineering type of
question. Our hardware will undoubtedly limit our
choice of node and edge function possibilities and so
what can we do with that limitation?

e In the graph, some edges will be thought of as
inhibitory and some as excitatory. Hence, for our
choice of node and edge functions where should
inhibitory connections be placed to maximize
cognitive function?

e Since the graph model could be based on mushroom
bodies for the associative functionality or even a novel
architecture with different signaling systems as in the
Ctenophore, what functionality can we achieve for a
given choice of node and edge functions in neural
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systems with different types of association machinery?
Are there optimal choices we can capitalize on?

e The graph model can easily incorporate hormone
influences on the computational node interactions. A
nice treatment of how hormones influence brain
plasticity is in (Garcia-Segura 2009) and reading that
makes us realize that triggers on the order of 10~* to
1073 smaller in magnitude than other triggers can
influence the neural systems global responses over
time frames that exceed weeks. Note the very large
time scale range here: a trigger at the mS level is
introduced and through a cascade of multiplicative
reactions leads to macro level changes at time scales
107 orders of magnitude higher. This range of
computation is very difficult to simulate and indicates
how important it is for us to design architectures that
do well at multiple time scales.

e A similar problem occurs if we add glial modifications
to the model and it is probably true that changes in
glial functioning effect mood and influence some
aspects of mental dysfunction (Rajkowska 2000).
However, adding glial interaction requires more levels
of nonlocal interaction. We do not address that in
(Peterson 2014a) but we believe approximations for
these effects should be based on low level modeling
insights such as we have been discussing here.

¢ In the neural organization that subserves associative
function, why is a laminar structure so useful? A clue
to that comes for mathematical homology which
allows us to find a type of structure which is
conserved in graph structure. We can not present any
of those details here, but suffice it to say that perhaps
the conserved structure that is most efficient occurs
when the graph we start with has the right kind of
laminar structure. The best tantalizing glimpse into
this is in (Ghrist 2007).
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